Chapter 14

Enterprise Systems Training Strategies: Knowledge Levels and User Understanding

Tony Coulson
California State University, San Bernardino, USA

Lorne Olfman
Claremont Graduate University, USA

Terry Ryan
Claremont Graduate University, USA

Conrad Shayo
California State University, San Bernardino, USA

ABSTRACT

Enterprise systems (ESs) are customizable, integrated software applications designed to support core business processes. This paper reports research contrasting the relative effectiveness of two strategies for ES end-user training that differentially reflect the Sein, Bostrom, and Olfman (1999) hierarchical knowledge-level model. One strategy—procedural—involves training that targets the three lowest knowledge levels of the model (command-based, tool-procedural, and business-procedural); the other—tool-conceptual—involves training that also includes a higher knowledge level (tool-conceptual). A non-equivalent quasi-experimental design was used for groups of senior business students being trained to use an authentic ES. Performance measures were administered during training and ten days after training concluded. Both experiments demonstrated that training involving the tool-conceptual knowledge level leads to superior mental models, compared with training oriented toward lower knowledge levels, as expressed in the recollection and communication of ES concepts. Tool-conceptual knowledge-level training can be used to promote understanding and communication, and should be incorporated into training strategies for ES.

DOI: 10.4018/978-1-4666-0140-6.ch014
INTRODUCTION

Enterprise systems (ESs) are customizable, integrated software applications designed to support core business processes. Enterprise systems such as ERP, CRM and SCM often take years to implement, but unfortunately a significant number of ES implementations fail (Viehland & Shakir, 2005). Successful training strategies can help reduce failure (Wheatley, 2000). This study seeks to advance research in ES end-user training, examining strategies that could lead to more effective use of ESs and increase the chances of ES implementation success.

A large body of training research exists that relates to ES end-user training. From this literature, the Sein, Bostrom and Olfman (1999) hierarchical knowledge-level model (Figure 1) can serve as the basis for alternate ES training methods. The model can be used to develop specific training approaches and methods across a wide variety of end-user training settings.

According to this model, training strategies should consider the types of trainees and IT tools on which they will be trained. The training methods should be designed using these inputs with the goal of achieving desired levels of knowledge, instead of focusing narrowly on skills and procedures (Sein et al., 1999). Table 1 characterizes ES end-user training outcomes in terms of knowledge levels.

End-user training provided by ES vendors is traditionally classroom based and focused on the interface and transaction procedures (Wheatley, 2000). In terms of knowledge level outcomes (Table 1), typical ES training focuses on a small portion of potential knowledge levels, specifically: the syntax and semantics of the command-based knowledge level; the combining of commands to complete tasks in the tool-procedural knowledge level; and sometimes the application of tools to a given business process in the business-procedural level (Sein et al., 1999; Wheatley, 2000; Olfman et al., 2001; Shupe & Behling, 2006).

This research contrasts existing ES training methods with a new training strategy that encompasses a broader range of knowledge levels. As shown in Figure 2, this study provides some trainees with traditional ES training covering the first three knowledge levels (command-based, tool-procedural, and business-procedural) and other trainees with ES training that adds the tool-conceptual knowledge level.
Related Content

Consistency in Human-Computer Interfaces for End-Users
Chang-Tseh Hsieh, Ming-Te Lu and Engming Lin (1994). Journal of End User Computing (pp. 3-10).
www.igi-global.com/article/consistency-human-computer-interfaces-end/55706?camid=4v1a

Integration of Microcomputers into the Organization: A Human Adaptation Model and the Organizational Response
www.igi-global.com/article/integration-microcomputers-into-organization/55670?camid=4v1a

A Markup Approach to Surveys and Questionnaires
www.igi-global.com/article/markup-approach-surveys-questionnaires/55734?camid=4v1a

Modeling Learner’s Cognitive Abilities in the Context of a Web-Based Learning Environment
www.igi-global.com/chapter/modeling-learner-cognitive-abilities-context/18207?camid=4v1a