Chapter 12

The Red Storm Architecture and Early Experiences with Multi–Core Processors

James L. Tomkins
Sandia National Laboratories, USA

Ron Brightwell
Sandia National Laboratories, USA

William J. Camp
Sandia National Laboratories, USA

Sudip Dosanjh
Sandia National Laboratories, USA

Suzanne M. Kelly
Sandia National Laboratories, USA

Paul T. Lin
Sandia National Laboratories, USA

Courtenay T. Vaughan
Sandia National Laboratories USA

John Levesque
Cray Inc., USA

Vinod Tipparaju
Oak Ridge National Laboratory, USA

ABSTRACT

The Red Storm architecture, which was conceived by Sandia National Laboratories and implemented by Cray, Inc., has become the basis for most successful line of commercial supercomputers in history. The success of the Red Storm architecture is due largely to the ability to effectively and efficiently solve a wide range of science and engineering problems. The Cray XT series of machines that embody the Red Storm architecture have allowed for unprecedented scaling and performance of parallel applications spanning many areas of scientific computing. This chapter describes the fundamental characteristics of the architecture and its implementation that have enabled this success, even through successive generations of hardware and software.

DOI: 10.4018/978-1-4666-0906-8.ch012
INTRODUCTION

In 2001, the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) commissioned Sandia National Laboratories (Sandia) to obtain new computational capability to address mission needs for very high-end computation. After a Request For Information (RFI) failed to provide proposed architectures that met the application scalability and cost requirements for the new system, Sandia issued a Request For Proposals (RFQ) that essentially prescribed in detail the architecture for a new massively parallel computer, dubbed Red Storm. Sandia received proposals from two potential suppliers, but neither proposal met the requirements as laid out in the Statement Of Work (SOW). However, one of the proposers, Cray, Inc., indicated a willingness to engineer a system to Sandia’s architectural specifications and within the cost envelope. Subsequently, Sandia awarded the development contract to Cray, and Sandia and Cray then jointly produced the Red Storm supercomputer system—going from architectural specification to first hardware deployment in approximately 30 months. This extremely short development time was largely enabled by the simple design for scalability and for scalable manufacturability promulgated by Sandia in the architectural specifications.

As part of the contract, Cray was required to develop a commercial product based on the Red Storm architecture. In 2005, Cray introduced the XT3 supercomputing system. Subsequent versions (XT4 and XT5) have been widely deployed in the high-performance computing market; and in 2008, the Cray XT product line became the most successful supercomputer in history with over one thousand cabinets sold. Although national security was a key target, the Red Storm architecture has proven to be effective at solving a wide range of science and engineering problems. These applications include climate change, fusion, material science, structural response, nanomaterials, biology, catalysis, combustion and astrophysics. This chapter describes the fundamental characteristics of the Red Storm architecture and its implementation that have enabled this success, even through successive generations of hardware and software.

We previously described our approach to the Red Storm architecture prior to its development (Brightwell et al., 2005). In this chapter, we summarize the key points of our approach and provide a retrospective now that the architecture has been widely deployed. The rest of this chapter is organized as follows. In the next section, we discuss the history of massively parallel processing (MPP) systems that influenced the development of the Red Storm architecture and enumerate the key characteristics instrumental in its success. In the following section, we describe the hardware components of the architecture and the evolution of the Red Storm machine at Sandia. Following that, the software environment is presented, with a focus on the important factors that enabled scalability and performance across successive generations of hardware. We continue with a discussion of the Cray XT product line, and then provide several examples of application performance on the Sandia Red Storm system and Cray XT systems at Oak Ridge National Laboratory. The final section summarizes the major contributions of this chapter.

RED STORM ARCHITECTURE

Experience and Influences

The Red Storm architecture grew out of the experience gained during Sandia’s long history of using and operating large-scale parallel computers. Sandia’s experience began with the first 1024-processor nCUBE-10 computer system in 1987. It continued with a 16 thousand-processor Thinking Machines CM2, two 1024-processor nCUBE2s, a 128-processor Intel iPSC/2, and a 128-processor Intel iPSC/860. All of these first-generation machines used hypercube network fabric topolo-
Related Content

TinyDDS: An Interoperable and Configurable Publish/Subscribe Middleware for Wireless Sensor Networks
www.igi-global.com/chapter/tinydds-interoperable-configurable-publish-subscribe/44401?camid=4v1a

A Dynamic Load Balancing Strategy with Adaptive Thresholds (DLBAT) for Parallel Computing System
www.igi-global.com/article/a-dynamic-load-balancing-strategy-with-adaptive-thresholds-dlbat-for-parallel-computing-system/104764?camid=4v1a

Supercomputers in Modeling of Biological Systems
Randall Maples, Sindhura Ramasahayam and Gerard G. Dumancas (2015). Research and Applications in Global Supercomputing (pp. 201-222).
www.igi-global.com/chapter/supercomputers-in-modeling-of-biological-systems/124343?camid=4v1a

Scalable Distributed Two-Layer Data Structures (SD2DS)
www.igi-global.com/article/scalable-distributed-two-layer-data/78151?camid=4v1a