Chapter 7.8

Security Standards and Issues for Grid Computing

Athanasios Moralis
National Technical University of Athens, Greece

Vassiliki Pouli
National Technical University of Athens, Greece

Mary Grammatikou
National Technical University of Athens, Greece

Dimitrios Kalogeras
National Technical University of Athens, Greece

Vasilis Maglaris
National Technical University of Athens, Greece

ABSTRACT

Security in grid environments that are built using Service Oriented Architecture (SOA) technologies is a great challenge. On one hand, the great diversity in security technologies, mechanisms and protocols that each organization follows and on the other hand, the different goals and policies that these organizations adopt, comprise a complex security environment. Authenticating and authorizing users and services, identity management in a multi-organizational scenario and secure communication define the main context of the problem. In this chapter, we provide an overview of the security protocols and technologies that can be applied on a Web Service (WS) based grid environment.

INTRODUCTION

A Grid is a large-scale generalized network system that offers computing resources across multiple organizations and administrative domains. For the transport of the data across the grid nodes and the interaction of the users with the grid resources, mechanisms should be utilized to assure those. The Web Services (WSs) based on the Service Oriented Architecture (SOA) provide this.

SOA provides the basic paradigm for building software applications that can be applied in today’s complex and heterogeneous environments. SOA is the first integration and architec-
tural framework that uses services available in
the web and promotes loose coupling between
software components, thus resulting in reusable
components. SOA uses as basic building blocks
the services. A service is an implementation of a
well-defined business functionality. Following this
strict approach, this kind of services can then be
consumed by clients in different applications or
by business processes. SOA in general does not
impose any style of services. However, the de-
facto standard is using WS Architecture to realize
a SOA architecture. WSs are based on various
eXtensible Markup Language (XML) standards
such as Simple Object Access Protocol (SOAP),
Universal Description, Discovery and Integration
(UDDI), Web Services Description Language
(WSDL) and designed to support interoperable
machine-to-machine interaction over a network.

The wide acceptance that WSs meet is largely
due to the need of integration heterogeneous ap-
lications across different systems belonging to
different organizations across the Internet. WS
Technologies enable more dynamic, loosely-
coupled and synchronous or asynchronous interac-
tions between both inter-domain and intra-domain
applications. WSs expose in a standardized way
to external clients the application’s interface,
with the use of WSDL, hiding in most cases the
application’s internal complexity. As they are
often used over the Internet, for mission-critical
transactions with the possibility of dynamic, short-
term relationships, security is a major concern.
This elevates the value of securing them against a
wide range of attacks, both internal and external.
The main security issues that have to be addressed
are authentication, authorization, confidentiality,
data integrity, non-repudiation, single sign on,
delegation, trust and identity mapping.

To meet these security requirements, some WS
compatible mechanisms have been defined, i.e.
WS Security Specifications (Rosenberg & Remy,
2004), that apply at the message level and provide
ways to transfer security tokens and credentials
thus generally achieving end-to-end (from client
to service) security functionality.

Specific consortia have been constituted to
address and provide standards for these kinds of
WS related issues (Singhal, 2007). Major stan-
dardization initiatives, among them, are the World
Wide Web Consortium (W3C) and the Organiza-
tion for the Advancement of Structured Informa-
tion Standards (OASIS). These organizations try
to standardize WS specifications (including WS
Security Specifications) and provide a common
and global framework so that organizations and
applications can interoperate in heterogeneous
environments. Principal developers of the WS
Security (O’Neill, 2003) standards are the IBM,
Microsoft, VeriSign that have submitted the WS
Security Specification to OASIS and it was ap-
proved.

The rest of the chapter is organized as follows.
The following section we provide the basic
background, covering the WSs Security (WSS)
standard. The next section describes the additional
standards that complement the WSS, along with
related issues that each standard may have. The
two last sections provide the future directions
while they conclude the chapter.

BACKGROUND

Traditionally, communications have been pro-
tected at the network layer by adopting technolo-
gies such as the Secure Socket Layer (SSL) or
the Transport Layer Security (TLS) (Dierks &
Rescorla, 2006) and the Internet Protocol Security
(IPSec) (Kend & Atkinson, 1998).

SSL/TLS is a connection oriented protocol that
offers several security features including authen-
tication, data integrity and data confidentiality.
SSL/TLS enables point-to-point secure sessions.
Similarly, IPSec is a network layer standard for
transport security that provides secure sessions
with host authentication, data integrity and data
confidentiality. Both of these technologies are
Related Content

Cost Efficient Implementation of Multistage Symmetric Repackable Networks
Amitabha Chakrabarty and Martin Collier (2013). Applications and Developments in Grid, Cloud, and High Performance Computing (pp. 246-258).
www.igi-global.com/chapter/cost-efficient-implementation-multistage-symmetric/69039?camid=4v1a

Computational Grids: An Introduction to Potential Biomedical Uses and Future Prospects in Oncology; Neuro-Oncology Applications as a Model for Cancer Sub-Specialties
www.igi-global.com/chapter/computational-grids-introduction-potential-biomedical/64482?camid=4v1a

Multiuser Diversity OFDMA using Power Priority Selection and Adaptive Clipping
www.igi-global.com/article/multiuser-diversity-ofdma-using-power-priority-selection-and-adaptive-clipping/119191?camid=4v1a

Observations on Effect of IPC in GA Based Scheduling on Computational Grid
www.igi-global.com/article/observations-effect-ipc-based-scheduling/62998?camid=4v1a