Chapter 1
Perspectives on Cognitive Informatics and Cognitive Computing

Yingxu Wang
University of Calgary, Canada

George Baciu
The Hong Kong Polytechnic University, Hong Kong

Yiyu Yao
University of Regina, Canada

Witold Kinsner
University of Manitoba, Canada

Keith Chan
The Hong Kong Polytechnic University, Hong Kong

Bo Zhang
Tsinghua University, China

Stuart Hameroff
The University of Arizona, USA

Ning Zhong
Maebashi Institute of Technology, Japan

Chu-Ren Hunag
The Hong Kong Polytechnic University, Hong Kong

Ben Goertzel
Novamente LLC, USA

Duoqian Miao
Tongji University, China

Kenji Sugawara
Chiba Institute of Technology, Japan

Guoyin Wang
Chongqing Posts and Telecommunications University, China

Jane You
The Hong Kong Polytechnic University, Hong Kong

Du Zhang
California State University - Sacramento, USA

Haibin Zhu
Nipissing University, Canada
ABSTRACT

Cognitive informatics is a transdisciplinary enquiry of computer science, information sciences, cognitive science, and intelligence science that investigates the internal information processing mechanisms and processes of the brain and natural intelligence, as well as their engineering applications in cognitive computing. Cognitive computing is an emerging paradigm of intelligent computing methodologies and systems based on cognitive informatics that implements computational intelligence by autonomous inferences and perceptions mimicking the mechanisms of the brain. This article presents a set of collective perspectives on cognitive informatics and cognitive computing, as well as their applications in abstract intelligence, computational intelligence, computational linguistics, knowledge representation, symbiotic computing, granular computing, semantic computing, machine learning, and social computing.

INTRODUCTION

Definition 1: Cognitive Informatics (CI) is a transdisciplinary enquiry of computer science, information science, cognitive science, and intelligence science that investigates into the internal information processing mechanisms and processes of the brain and natural intelligence, as well as their engineering applications in cognitive computing (Wang, 2002a, 2003a, 2003b, 2004, 2005, 2007b, 2008b, 2009a; Wang & Kinsner, 2007; Wang & Wang, 2006; Wang, Kinsner, & Zhang, 2009a, 2009b; Wang et al., 2006, 2009).

The latest advances and engineering applications of CI have led to the emergence of cognitive computing and the development of cognitive computer that think and learn, as well as autonomous agent systems.

Definition 2: Cognitive Computing (CC) is an emerging paradigm of intelligent computing methodologies and systems based on cognitive informatics that implements computational intelligence by autonomous inferences and perceptions mimicking the mechanisms of the brain (Wang, 2002a, 2009b, 2009g).

CC is emerged and developed based on the transdisciplinary research in cognitive informatics, abstract intelligence, and denotational mathematics since the inauguration of the 1st IEEE International Conference on Cognitive Informatics (ICCI 2002, see Figure 1) (Wang et al., 2002, 2008).

Definition 3: Abstract Intelligence (αI) is the general mathematical form of intelligence as a natural mechanism that transfers information into behaviors and knowledge (Wang, 2009a).

Typical paradigms of αI are natural intelligence, artificial intelligence, machinable intelligence, and computational intelligence, as well as their hybrid forms.

Definition 4: Denotational Mathematics (DM) is a category of expressive mathematical structures that deals with high-level mathematical entities beyond numbers and sets, such as abstract objects, complex relations, perceptual information, abstract concepts, knowledge, intelligent behaviors, behavioral processes, and systems (Wang, 2002b, 2007a, 2008a, 2008c, 2008d, 2008e, 2009d, 2009f; Wang, Zadeh & Yao, 2009).

In recognizing mathematics as the meta-methodology of all sciences and engineering disciplines, a set of DMs have been created and applied in CI, αI, CC, AI, soft computing, computational intelligence, and fuzzy inferences.

The IEEE ICCI series has been established since 2002 (Wang, 2002a, 2003b; Wang et al.,...
Related Content

Connecting the Dots: Art, Culture, Science, and Technology
www.igi-global.com/chapter/connecting-the-dots/127486?camid=4v1a

Incremental Knowledge Construction for Real-World Event Understanding
Koji Kamei, Yutaka Yanagisawa, Takuya Maekawa, Yasue Kishino, Yasushi Sakurai and Takeshi Okadome (2010). International Journal of Cognitive Informatics and Natural Intelligence (pp. 65-79).
www.igi-global.com/article/incremental-knowledge-construction-real-world/40306?camid=4v1a

Mining Conflict Semantic from Drug Dataset for Detecting Drug Conflict
Shunxiang Zhang, Guangli Zhu, Haiyan Chen and Dayu Yang (2015). International Journal of Cognitive Informatics and Natural Intelligence (pp. 87-104).
www.igi-global.com/article/mining-conflict-semantic-from-drug-dataset-for-detecting-drug-conflict/140688?camid=4v1a

Rationale for Cognitive Machines
www.igi-global.com/chapter/rationale-cognitive-machines/27872?camid=4v1a