Chapter 4
A New Efficient and Effective Fuzzy Modeling Method for Binary Classification

T. Warren Liao
Louisiana State University, USA

ABSTRACT
This paper presents a new fuzzy modeling method that can be classified as a grid partitioning method, in which the domain space is partitioned by the fuzzy equalization method one dimension at a time, followed by the computation of rule weights according to the max-min composition. Five datasets were selected for testing. Among them, three datasets are high-dimensional; for these datasets only selected features are used to control the model size. An enumerative method is used to determine the best combination of fuzzy terms for each variable. The performance of each fuzzy model is evaluated in terms of average test error, average false positive, average false negative, training error, and CPU time taken to build model. The results indicate that this method is best, because it produces the lowest average test errors and take less time to build fuzzy models. The average test errors vary greatly with model sizes. Generally large models produce lower test errors than small models regardless of the fuzzy modeling method used. However, the relationship is not monotonic. Therefore, effort must be made to determine which model is the best for a given dataset and a chosen fuzzy modeling method.

INTRODUCTION
Binary classification refers to the task of classifying an unknown object into one of the two known classes. Many real world problems can be formulated as binary classification problems. The examples are numerous, which include determining whether a patient has certain disease or not, determining whether an artifact is defective or not, determining whether an email is a spam or not, and so on. Before classification can be carried out, a classification system or a classifier must be built first. A classification system or classifier built for performing binary classification is called a binary classifier. Many machine learning methods
such as decision trees, neural networks, support vector machines, and fuzzy models are suitable for building binary classifiers. Of interest in this paper are fuzzy models.

A fuzzy model is comprised of a set of fuzzy if-then rules. Various forms of fuzzy rules are possible. Most well-known among them are Mamdani linguistic rules and TSK rules, as described below for an n-input and single-output system.

- **Mamdani linguistic rules** are of the form of R_i: If X_i is A_{i1} and X_j is A_{j2}, ..., and X_k is A_{k3}, then Y is B_i. In each Mamdani rule, X_n denotes the nth input variable, A_n the fuzzy set associated with A_{n1} and B_i the fuzzy set associated with output variable Y of rule R_i. B_i can be represented by its modal value or as a fuzzy singleton for fuzzy control and classification applications.

- **TSK rules** are of the form of R_i: If X_i is A_{i1} and X_j is A_{j2}, ..., and X_k is A_{k3}, then $Y = b_{i0} + b_{i1}X_1 + b_{i2}X_2 + ... + b_{i3}X_n$. In each TSK rule, X_n denotes the nth input variable, A_n the fuzzy set associated with A_{n1} and b_{i} is a parameter vector and b_{i0} is a scalar offset associated with rule R_i. If all parameters in the vector b_i are zeros, then TSK rules are identical to Mamdani rules with B_i being fuzzy singletons.

A fuzzy model built for classification consists of a set of fuzzy classification rules of the following form R_i: If X_i is A_{i1} and X_j is A_{j2}, ..., and X_k is A_{k3}, then Y is B_i. In each classification rule, X_n denotes the nth input variable, A_n the fuzzy set associated with A_{n1} and $B_i \in \{B_{i1}, B_{i2}, ..., B_{im}\}$ representing the class label of rule R_i. For binary classification problems, there are only two values, i.e., $B_i \in \{B_{i1}, B_{i2}\}$. Fuzzy classification rules are identical to Mamdani rules with B_i being fuzzy singletons or TSK rules with b_i being zeros. Each rule could be assigned a rule weight. If not explicitly assigned, each rule is considered having rule weight of one.

Fuzzy models can be built manually or interactively using a tool designed to do that, e.g. the FIS Editor in the Matlab fuzzy toolbox. These approaches, however, require a priori knowledge about the model. The alternative is to build fuzzy models from data for which numerous methods have been proposed. These data-driven methods can be grouped into the following categories (Liao, 2006):

- **Grid partitioning:** This method divides the domain space into overlapped rectangular parallelepiped grids by specifying the number and shape of membership functions along each dimension. Data is then used to choose rule consequent and to compute rule weight. The earliest and most famous paper in this category is the method proposed by Wang and Mendel (1992), called the WM method later.

- **Fuzzy clustering:** This method applies a fuzzy clustering algorithm to partition the domain space, either one dimension at a time or all dimensions together at one time. The former approach works like grid partitioning except that the data distribution is taken into account. The fuzzy c-means variant-based method is an example (Liao, 2004). The latter approach generates a set of rules with each corresponding to a cluster. The membership function along each dimension could be obtained by projection, but might not be interpretable. The genfis2 function in the Matlab toolbox is an example, which implements the fuzzy subtractive clustering method.

- **Genetic-fuzzy modeling or using other metaheuristics:** This method involves the use of a genetic algorithm to help determine model structure and/or model parameters. Interested readers are referred to Cordón et al. (2004) for an overview of genetic fuzzy systems. The uses of other
Related Content

Discovering Mappings Between Ontologies
www.igi-global.com/chapter/discovering-mappings-between-ontologies/10292?camid=4v1a

Risk Prediction Model for Osteoporosis Disease Based on a Reduced Set of Factors
www.igi-global.com/chapter/risk-prediction-model-for-osteoporosis-disease-based-on-a-reduced-set-of-factors/125513?camid=4v1a

Association Analysis of Alumni Giving: A Formal Concept Analysis
www.igi-global.com/article/association-analysis-alumni-giving/2449?camid=4v1a

An Intelligent Operator for Genetic Fuzzy Rule Based System
www.igi-global.com/article/intelligent-operator-genetic-fuzzy-rule/58054?camid=4v1a