Chapter 9
The Design of Virtual Space: Lessons from Videogame Travel

Steve Guynup
Art Institute of Pittsburgh - Online Division, USA

ABSTRACT
Videogames are the starting point for the general understanding of virtual space. (Grove & Williams, 1998). Academics use videogames to describe virtual space (Murray, 1997; Nitsche, 2009). Others argue that there is no understanding of virtual space, only a loose collection of articles connected by the issue of realism in rendering or behavior (Manovich, 2001). These statements point to a lack of understanding of virtual space on its own terms and set the stage for this document. This is a design document, written by a designer of virtual spaces. Its purpose is to provocatively explore user experience and task completion as forces that influence the design of virtual space. This is not a conventional research paper. The complex relationships of narrative, realism, motivation, usability, and human computer interaction (HCI) are unpacked in the videogame World of Warcraft through a detailed examination of travel. It is proposed that the exploration of travel in a videogame can provide a toolkit of ideas for the application of narrative, realism, motivation, and usability in virtual space. Travel can inform designers on issues of user experience and task completion in virtual spaces.

OVERVIEW AND BACK-STORY, THE WISDOM OF WARCRAFT

Overview and Terms

Virtual space in this document is defined as a computer generated, visually dimensional environment traversable by a user. Virtual space is capable of supporting both work and play. Work and play place different design objectives upon a virtual space. In this document, work takes on the functional imperative of efficient task completion. Play is loosely translated interactions outside the domain of work and is expressed as user experience. Videogames are seen as a subset of virtual space. The key difference in this document is that while virtual space allows for task failure, videogames actively prioritize user experience over efficient task completion. They expect and utilize...
task failure. This simple change of priorities, a promoting of user experience over task completion, turns even basic behaviors like falling down, into very complex interactions.

The virtual design forces discussed here, user experience and task completion, should be in harmony. Harmony however, is not a magical occurrence. It takes effort and understanding to balance these forces and meet the needs of the user. In this document, task completion is further understood through the computer science domain of human computer interaction (HCI) and its subset usability. Usability is narrowly defined as the software’s ability help accomplish productive tasks effectively and efficiently (Hackos & Redish, 1998). Example productive tasks are image manipulation in Adobe Photoshop and text editing in Microsoft Word. The idea of a productive task and task completion in virtual space, in this document, is held to that same practical standard.

User experience could be addressed through HCI studies, but given the need to understand user experience as separate and possibly in conflict with task completion, user experience is addressed through narrative and film studies. The use of storytelling and narrative in games is well known (Murray, 1996). Linking narrative to representation, or realism is common in film studies (Bordwell, 1985). Manovich’s statement that virtual space is understood through realism in rendering or behavior, demonstrates the deep and often hidden role narrative plays in design as narrative is linked to realism.

The idea of conflict between user experience and task completion, as narrowly defined above, is straightforward in software like Microsoft Word. Users of Microsoft Word, don’t wish to slay dragons to edit a line of text, find hidden treasure behind a magic keystroke, or lose themselves in a complex immersive interface. Connecting this definition of task completion to virtual space is awkward. This awkwardness may be due to the common conception of virtual space as a video-game, a place where you are in fact tasked to slay dragons and find treasure.

To smooth this awkwardness, the idea of an avatar as a network cursor (Heim, 1998) may be helpful. Rather than view a user’s avatar as a faux human mask for role-playing (Laurel, 1994), an avatar can be seen as a point from which a user accesses, manipulates and shares data (Carlson & Guynup, 2002). Like the cursor in Microsoft Word, avatars move and generate actions within a digital interface. This simple analogy does connect travel in virtual space to conventional usability two dimensional interface practices, and should be kept in mind throughout this document. This analogy of avatar as a network cursor can highlight the exponential impact of narrative and motivation on virtual design. It also highlights the impact of going from two to three dimensions in terms of usability. The next section steps into the specifics of the design forces in videogame based virtual spaces and offers an example of one particular cursor-avatar.

While Traveling on a Zeppelin
... A Cursor Story

It was early Sunday afternoon, and I was riding the zeppelin to the Undercity. A woman was standing uncomfortably close to the edge of the gondola. Before we reached the city’s sky tower platform, she leapt from the zeppelin. Silently she fell. She died on impact. With the knowledge of her death, a word crossed my mind—Noob.

This World of Warcraft player tried to cut a corner. She tried to make her travel task shorter by not waiting for the zeppelin’s designated stop at the sky tower. Yet, she misjudged the safeness of the height from which she jumped and died. This player was now running back from the graveyard to retrieve her body. Luckily, videogame death is not permanent; it is merely a delay in task completion. World of Warcraft teleports you to the region’s graveyard and forces the player/user, in a ghost
Related Content

A Case for Integration: Assessment and Games
Alex Moseley (2014). *Psychology, Pedagogy, and Assessment in Serious Games* (pp. 342-356).
[www.igi-global.com/chapter/a-case-for-integration/90531?camid=4v1a](www.igi-global.com/chapter/a-case-for-integration/90531?camid=4v1a)

Using Recommendation Systems to Adapt Gameplay
[www.igi-global.com/article/using-recommendation-systems-adapt-gameplay/3960?camid=4v1a](www.igi-global.com/article/using-recommendation-systems-adapt-gameplay/3960?camid=4v1a)

Exploring Cognitive Load in Immersive Educational Games: The SAVE Science Project
[www.igi-global.com/article/exploring-cognitive-load-immersive-educational/40937?camid=4v1a](www.igi-global.com/article/exploring-cognitive-load-immersive-educational/40937?camid=4v1a)

Serious Lessons from the Commercial Games Industry
Dave Beaudoin (2012). *Handbook of Research on Serious Games as Educational, Business and Research Tools* (pp. 269-279).
[www.igi-global.com/chapter/serious-lessons-commercial-games-industry/64259?camid=4v1a](www.igi-global.com/chapter/serious-lessons-commercial-games-industry/64259?camid=4v1a)