Chapter 6
Exploring the Co-Development of Mathematical and Technological Knowledge Among African American Students

Francis Nzuki
Richard Stockton College of New Jersey, USA

ABSTRACT
This study examines African American students’ interactions with the graphing calculator as a tool to support their mathematical learning. Two participants, chosen through purposive sampling, were the focus of this study. The participants were presented with a task-based interview, and the strategies they employed in solving these tasks with the help of a graphing calculator were examined. The participants’ strategies were analyzed using Goos, Galbraith, Renshaw, and Geiger’s (2003) framework of the varying modes of sophistication with which students work and interact with technology and the ways in which technology can mediate learning. These modes include technology as master, technology as servant, technology as partner, and technology as an extension of self. In solving the mathematical tasks, the participants’ modes of interacting with the graphing calculator technology were influenced by how and when they chose to use the graphing calculator. They were also influenced by their ability to reinforce their mathematical and technological knowledge mutually. It is this ability to develop an interactive relationship between mathematical and technological knowledge that shaped the participants’ fluency in solving the mathematical tasks.

INTRODUCTION
Several reports have documented underachievement and limited persistence of African American students in mathematics (Delpit, 1995; Ladson-Billings, 1995; Martin, 2000, 2003; Oakes, 1985; Perry, Claude, & Hilliard, 2003; Stinson, 2006; Tate, 1997b). Further, studies reveal that at both high school and collegiate levels advanced mathematics classes have mainly White and Asian American students, while remedial mathematics classes contain disproportionate number of African American students (Martin, 2003; Moses & Cobb, 2001; Tate, 1997b). While there are disturbingly
low rates of mathematics achievement among students of color, data from the 2003 Mathematics Assessment of The National Assessment Educational Progress revealed that compared to other students of color—Hispanic, Asian/Pacific islanders, and American Indian/Alaska native students—African American students scored lower on average in both the fourth and eighth grade (Braswell, Daane, & Grigg, 2003).

Further, in discussing equity issues in mathematics, the use of technology in classrooms has been recommended as useful in helping engage low-SES and students of color in learning that encourage them to use complex thinking skills in mathematics (Hennessy & Dunham, 2002). The National Council of Teachers of Mathematics (NCTM) (2000) argues that “technological tools and environments can give all [emphasis added] students opportunities to explore complex problems and mathematical ideas” (p. 13). In addition, NCTM posits that technology can attract students who disengage from non-technological approaches to mathematics and that all students should have opportunities to use technology in appropriate ways that will afford them access to interesting and important mathematical ideas. On the other hand, students need to have sufficient technological knowledge in order for them to use the technology appropriately. When technology produces ill-fitted or unsuitable results, students can use their mathematical knowledge to foster the development of their technological knowledge in order to correct or interpret the output of the technology. Thus, while the use of technology can augment students’ learning of mathematics, their mathematical knowledge can foster the acquisition of more knowledge of technological tools. As such, through the opportunities afforded to them to interact with technology when learning mathematics, it is worth examining the dialectic relationship between the technological knowledge that low-SES and students of color develop and their mathematical knowledge.

The study reported in this article is derived from previous work (Nzuki, 2008) and examines African American students’ development of an interactive relationship between their mathematical and technological knowledge when using graphing calculators to solve mathematical tasks. The study was guided by the following research question:

What interactive relationship between technological and mathematical knowledge do African American students at a low-SES school develop?

Theoretical Framework

A sociocultural perspective lays emphasis on the socially and culturally situated nature of mathematical activity, where the classroom, as a community of practice, supports a culture of sense-making where meanings are shared among students and the teacher. From this perspective, learning entails the collective process of enculturation into the practices of mathematical communities (Galbraith, Goos, Reinshaw, & Geiger, 1999) where students interact among themselves, with the teacher, the mathematics tasks, and classroom artifacts within the social context of the classroom. These interactions are patterned and governed by social expectations, conventions, norms, habits, and rituals (Galbraith et al., 1999; Goos, Galbraith, Reinshaw, & Geiger, 2000; Warschauer, Knobel, & Stone, 2004). An essential aspect of sociocultural theory is that learning is mediated by cultural tools and is fundamentally transformed in the process. The graphing calculator technology is an example of how such tools transform mathematical tasks. Learning, thus, is a process of appropriating the cultural tools recognized by a community of practice, and participation in such classroom communities requires learners to acquire new forms of reasoning and action that are beyond their established capabilities (Galbraith et al., 1999; Goos et al., 2000).

In order to describe the varying degrees of sophistication with which students and teachers
Related Content

Forming Groups for Collaborative Learning of Introductory Computer Programming Based on Students’ Programming Skills and Learning Styles
www.igi-global.com/article/forming-groups-collaborative-learning-introductory/59696?camid=4v1a

Realistic versus Schematic Interactive Visualizations for Learning Surveying Practices: A Comparative Study
www.igi-global.com/article/realistic-versus-schematic-interactive-visualizations-for-learning-surveying-practices/110370?camid=4v1a

The Effectiveness of Scaffolding in a Web-Based, Adaptive Learning System
www.igi-global.com/chapter/effectiveness-scaffolding-web-based-adaptive/49294?camid=4v1a

Rethinking Reusability: Implications from a Longitudinal Study of Online Role-Play in Australian Higher Education
Sandra Wills (2013). *Outlooks and Opportunities in Blended and Distance Learning* (pp. 129-138).
www.igi-global.com/chapter/rethinking-reusability-implications-longitudinal-study/78402?camid=4v1a