Chapter 4
A Knowledge Engineering Approach to Develop Domain Ontology

Hongyan Yun
Ocean University of China and Qingdao University, China

Jianliang Xu
Ocean University of China, China

Jing Xiong
Ocean University of China, China

Moji Wei
Ocean University of China, China

ABSTRACT
Ontologies are one of the most popular and widespread means of knowledge representation and reuse. A few research groups have proposed a series of methodologies for developing their own standard ontologies. However, because this ontological construction concerns special fields, there is no standard method to build domain ontology. In this paper, based on discussing and analyzing representative ontology building methodologies, the authors propose a knowledge engineering approach to build domain ontology by combining software development life cycle standard IEEE 1074-2006 with design ontology criteria proposed by T. R. Gruber. The authors use the ontology editor Hozo to develop a marine biology ontology for an e-learning course. They verify the validity and rationality of marine biology ontology by applying it to a practical system called OASIS. The authors then demonstrate the applicability of their proposed knowledge engineering approach.

DOI: 10.4018/978-1-4666-2032-2.ch004
1. INTRODUCTION

The term ontology is originated from philosophy, where ontology is a systematic account of Existence. Ontologies are now widely used in knowledge engineering, artificial intelligence and computer science. In theory, ontology is “a formal, explicit specification of a shared conceptualization” (Gruber, 1993). An ontology “consists of concepts, hierarchical (is-a) organization of them, relations among them (in addition to is-a and part-of), axioms to formalize the definitions and relations” (Mizoguchi, 2003).

Domain ontology models a specific domain, or part of the world. It represents the particular meanings of terms and relations among them as they apply to that domain, or the dominant theory in that domain.

The aim of ontology research is therefore to develop knowledge representations that can be shared and reused. Domain ontologies provide shared and common understanding of a specific domain.

Presently, ontologies are becoming a widely used tool for modeling knowledge in adaptive web systems (Chen & Mizoguchi, 2004). One of the leading application areas is E-learning. Domain, user, instructional ontologies are analyzed as tools for e-learning enhancement. We develop ontology as a tool for sharing and reuse on the subject knowledge.

A few research groups have proposed a series of steps and methodologies for developing their own standard ontologies. However, due to the fact that ontological construction aims at special fields and lacks mature method, it’s crucial to research methodologies for the development of domain ontology. We discuss and analyze some representative methodologies. Combining software development life cycle standard IEEE 1074-2006 (IEEE, 1996) with design ontology criteria proposed by T. R. Gruber (1995), we propose a knowledge engineering approach to construct domain ontology. Following this approach, we develop marine biology ontology for e-learning course.

The aim of this paper is to analyze the process of the development of domain ontology and to present our practical work in this field.

This paper is organized as follows: In section 2, we discuss and analyze some representative methodologies. In section 3, based on the analysis of discussed methodologies, we propose a knowledge engineering approach to build domain ontology. In section 4, following our proposed approach, we describe marine biology ontology development process in detail. In section 5, we verify the validity and rationality of marine biology ontology by applying it in a practical system called OASIS. Finally, we give a conclusion and future works.

2. ANALYSIS OF METHODOLOGIES FOR BUILDING ONTOLOGY

There are different methodologies for ontology development during a number of years. We present and analyze some representative methodologies against the IEEE Standard for Developing Software Life Cycle Process, 1074-2006 (IEEE, 1996).


The IEEE 1074-2006 (IEEE, 1996) is a standard for developing software project life cycle processes. It describes the software development process, the activities to be carried out, and the techniques that can be used for developing software. IEEE 1074-2006 software development life cycle flow includes 5 phases: Specification, Conceptualization, Formalization, Implementation and Maintenance. The aim of developing ontology is knowledge acquisition. Specification and Conceptualization is necessary precondition to implement knowledge acquisition. Evaluation works on the Implementation and Maintenance
Related Content

Informal Learning Projects and World Wide Voluntary Co-Mentoring
[www.igi-global.com/chapter/informal-learning-projects-world-wide/12237?camid=4v1a](www.igi-global.com/chapter/informal-learning-projects-world-wide/12237?camid=4v1a)

Adaptive Animation of Human Motion for E-Learning Applications
Frederick W.B. Li, Rynson W.H Lau, Taku Komura, Meng Wang and Becky Siu (2007). *International Journal of Distance Education Technologies* (pp. 74-85).
[www.igi-global.com/article/adaptive-animation-human-motion-learning/1704?camid=4v1a](www.igi-global.com/article/adaptive-animation-human-motion-learning/1704?camid=4v1a)

The Challenges and Opportunities of Online Postgraduate Coursework Programs in a Traditional University Context
Elizabeth Devonshire, Hannah Forsyth, Sharon Reid and Judy M. Simpson (2013). *Outlooks and Opportunities in Blended and Distance Learning* (pp. 353-368).
[www.igi-global.com/chapter/challenges-opportunities-online-postgraduate-coursework/78418?camid=4v1a](www.igi-global.com/chapter/challenges-opportunities-online-postgraduate-coursework/78418?camid=4v1a)

Development of Adaptive Kanji Learning System for Mobile Phone
[www.igi-global.com/chapter/development-adaptive-kanji-learning-system/61969?camid=4v1a](www.igi-global.com/chapter/development-adaptive-kanji-learning-system/61969?camid=4v1a)