Chapter 13

Possibility Spaces: Using The Sims 2 as a Sandbox to Explore Possible Selves with At-Risk Teenage Males

Elizabeth King
University of Wisconsin-Madison, USA

ABSTRACT

Interactive technologies provide today’s youth a low stakes sandbox to collect experiences (Gee, 2004) and try tasks and identities (Gee, 1991) that push the boundaries of “known” and open up the world of possibility. Pairing affordances of video games with the possible selves framework (Markus & Nurius, 1986), research involved using The Sims 2 life-simulation properties to encourage a friendship group of teenage males to create simulations of their hoped for and feared potential selves. While all participants reported increased crystallization (Super, 1981) of characteristics within their hoped for future self, at the conclusion of the intervention most participants still demonstrated an imbalance between feared and hoped potential selves. This suggests the need for additional work in the area of vocational and academic asset exploration, as well as the need to connect the consideration of possible self actualization to believable and realizable action plans.

INTRODUCTION

As simulated worlds, games are constructed with particular viewpoints expressing particular ideas offering players access to designed worlds (Squire, 2006) and designed experiences (Squire, 2005). Many times these designed experiences provide interaction with viewpoints or whole new worlds that do not exist in real life outside of games. These socio-technical spaces provide today’s youth a low stakes sandbox (Salen & Zimmerman, 2006) to collect experiences (Gee, 2004) and try things, not only tasks but also identities (Gee, 1991) that push the boundaries of “known” and open up the
world of possibility. This sort of identity play is regarded as an affordance of gameplay and virtual worlds (Gee, 2003, 2008; Turkle, 1995) facilitated through “...the play of imagination whereby the player is immersed in a world of dense and vivid representations that provoke them to think beyond what they see on the screen” (Thomas & Brown, 2007, p. 156).

As such, research has suggested identity play in gaming as affording a wide variety of opportunities to think like, or “be” practitioners such as a scientist (Barab, Sadler, Heiselt, Hickey, & Zuiker, 2007), historian (Squire & Durga, 2011) engaging in formal and informal scientific literacy (Steinkuehler & Duncan, 2008) or a business leader (Beck & Wade 2004; DiMarco, Lesser, & O’Driscoll, 2007) engaging in leadership (Steinkuehler et al., 2009) and organizational design (King et al., in press). As Thomas and Brown (2009) argue, it is important to consider the power of this situated approach “...to shape notions of identity in relation to institutions or infrastructures of the game space” (p. 40). Thus, not only are aspects of identity explored, but identity is enacted within an interconnected, complex system that,

...under the right circumstances may well be able to encourage (and actually help players to enact) an ‘attitude’ or ‘stance’ similar to the one taken by scientists studying complex systems. Wherein a person seems to enter imaginatively into a system, all the while seeing and thinking of it as a system, rather than as a group of local or random events. (Gee, 2004, p. 32)

This positions identity play in these spaces as a dynamic operation influenced by features of the designed space with actions and interactions operating as a complex system producing an array of cause and effect. As a player takes on the characteristics of an in-game avatar, he or she is actually engaging in a simulation portraying how a certain kind of person enacts certain kinds of behavior with certain kinds of outcomes. As Squire points out, this makes these socio-technical designed worlds (2006) the ultimate “possibility space.” (2010).

However, as Gee (2004) has discussed, identity is also a factor in learning, as being a successful learner also involves identity work (2003) enacted within the system of education. Although the research on games and learning has explored routes of tying gaming to productive skills and literacies that relate to education, a question remaining to be answered is “whether video games could create such empathy for the sorts of complex systems relevant to academic and other domains” (Gee, 2004, p. 32); other domains such as perhaps life? After all, the domain of life is the ultimate complex system with interconnected ties to not only academics, but also vocation and situated relationships crossing the entire lifeworld (Bruner, 1986). This sort of identity play may hold potential for working with at-risk students, who have challenges recognizing the connections between their current instantiations of self and the broad spectrum of future opportunities, or aspirations for the future.

Since youth are regularly engaged in gaming activities (Lenhart, Kahne, Middaugh, Macgill, Evans, & Vitak, 2008), using gaming or other forms of digital media thus might provide a fertile access point to try and build an understanding of the interconnected lifeworld they currently occupy that merges current and projected identity and the unique context of their life. One population in urgent need of this type of intervention is teenage boys who are at-risk and disaffiliated in a school setting, struggling with an underdeveloped self concept (Oyserman & Markus, 1990) and low aspirations for the future (Freeman, 2004).

Boys, School and Video Games

Within in the K-12 system, males face longstanding challenges in traditional literacy areas, including reading (Newkirk, 2002; Smith & Wilhelm; Millard, 1997; Rowan, Knobel, Bigum,
Related Content

Honing Emotional Intelligence with Game-Based Crucible Experiences
[www.igi-global.com/article/honing-emotional-intelligence-game-based/50555?camid=4v1a](www.igi-global.com/article/honing-emotional-intelligence-game-based/50555?camid=4v1a)

Educational Technologies and the Emergence of E-Learning 2.0
[www.igi-global.com/chapter/educational-technologies-emergence-learning/9113?camid=4v1a](www.igi-global.com/chapter/educational-technologies-emergence-learning/9113?camid=4v1a)

The General Conceptual Model
[www.igi-global.com/chapter/general-conceptual-model/5380?camid=4v1a](www.igi-global.com/chapter/general-conceptual-model/5380?camid=4v1a)

A Step towards a Pattern Language for e-Learning Systems
[www.igi-global.com/chapter/step-towards-pattern-language-learning/5231?camid=4v1a](www.igi-global.com/chapter/step-towards-pattern-language-learning/5231?camid=4v1a)