Chapter 3

Forecasting Inflation in India: An Application of ANN Model

Rudra P. Pradhan
Indian Institute of Technology Kharagpur, India

ABSTRACT

This paper presents an application of Artificial Neural Network (ANN) to forecast inflation in India during the period 1994-2009. The study presents four different ANN models on the basis of inflation (WPI), economic growth (IIP), and money supply (MS). The first model is a univariate model based on past WPI only. The other three are multivariate models based on WPI and IIP, WPI and MS, WPI, and IIP and MS. In each case, the forecasting performance is measured by mean squared errors and mean absolute deviations. The paper finally concludes that multivariate models show better forecasting performance over the univariate model. In particular, the multivariate ANN model using WPI, IIP, and MS resulted in better performance than the rest of other models to forecast inflation in India.

1. INTRODUCTION

Inflation is one of the recurrent topics in finance, particularly with reference to macroeconomic policies. This is because high inflation disrupts smooth functioning of market economy (Yap, 1996). The behaviour of inflation is well articulated in Philips curve analysis. Inflation has direct impact on money supply in the economy. So the existence of high inflation will certainly affect country’s investment plan in particular and economic growth in general. The best that one can do is to reduce uncertainty that involved in inflation and examining its short optimum relationship with money supply and economic growth.

Numbers of techniques are readily available to examine the financial time series data (Box & Jenkins, 1970). But with the developments of
non-linear time series analysis, several authors
have begun to explore the forecasting properties
of non-linear models in finance (Zhu et al., 2008;
Marcellion, 2004; Stock & Watson; 1998; Swanson
& White, 1997). Artificial Neural Network
(ANN) is one of the very important one (Kiani,
2008; Zhang, 2003; McMenamin, 1997; Kaun &
White, 1994). ANN is an attractive alternative tool
to both forecasting researchers and practitioners.
The existence of several distinguishing features
of ANNs makes them valuable and attractive for
a forecasting task (Zhang et al., 1998).

The objective of this study is to forecast inflation
in India using artificial neural networks. The
rest of the paper is organized as follows: Section
2 describes the model specification and database;
Section 3 presents results and its discussion; and
Section 4 finally renders conclusion.

2. MODEL SPECIFICATION
AND DATABASE

Artificial Neural Network (ANN) is an informa-
tion process technique for modelling mathematical
relationships between input variables and output
variables. It is a class of generalized non-linear
non parametric models inspired by studies of
the brain and nerve system (Alon et al., 2001).
Based on the construction of the human brain, a
set of processing elements or neurons (nodes) are
interconnected and organized in layers (Malliaris
& Salchenberger, 1996). In the recent times, this
technique is extensively used in financial mar-
kets, particularly to forecast inflation, interest
rate, inflation, exchange rate, etc. The compara-
tive advantage of ANN over more conventional
econometric model is that they can model com-
plex, possibly non-linear relationships without
any priori assumptions about the underlying data
generating process (White, 1990).

There are two ways ANN can be designed:
feed forward and feedback networks. Feedback
networks contain neurons that are connected to
them, enabling neuron to influence other neurons.
Kohonen self-organizing network and Hopfield
network are the type of feed forward network
(Wang, 2009). On the contrary, back propagation
neural network take inputs from the previous layer
and send outputs to the next layer. The present
study uses back propagation neural technique for
the forecasting exchange rate in India. In general,
ANN structure is composed of three layers: input
layer, hidden layer and output layer. Each layer
has a certain number of processing elements called
neurons. Signals are passed between neurons over
connection links. Each connection link has an
associated weight, which, in a typical neural net,
multiplies the signal transmitted. Each neuron
applies an activation function (usually nonlinear)
to its net input (sum of weighted input signals)
to determine its output signal. A neural network
performance (Figure 1) is highly dependent on
its structure. The interaction allowed between
various nodes of the network is specified using
the structure. The forecasting set up of ANN
consists of followings steps (Zhang, 2003): data
preparation, neural network set up (input variable
selection, choice of structure, transfer function,
etc.) and evaluation and selection.

The Structure of ANN

In this investigation, the feed-forward back-
propagation ANN is employed and its procedure
is outlined (Erims et al., 2007).

Step 1: Evaluate the net input to the jth node and
that to the kth node in the hidden layer as
follows:

\[net_j = \sum_{i=1}^{n} w_{ij} x_i - \theta_j, \quad net_k = \sum_{j=1}^{n} W_{kj} x_j - \theta_k \]

(1)
Related Content

Business Model of Internet Banks
www.igi-global.com/chapter/business-model-internet-banks/54786?camid=4v1a

Cross-Listing and Arbitrage without Overlapping Time
www.igi-global.com/chapter/cross-listing-and-arbitrage-without-overlapping-time/96082?camid=4v1a

HR Issues Towards Managing MSMEs Operating in India During Globalization Trends (with Special Reference to HR Outsourcing): An Extended Review

Business Relationships and Organizational Structures in E-Business
www.igi-global.com/chapter/business-relationships-organizational-structures-business/54839?camid=4v1a