Chapter 21

Sitting Posture Recognition and Location Estimation for Human–Aware Environment

Yusuke Manabe
Chiba Institute of Technology, Japan

Kenji Sugawara
Chiba Institute of Technology, Japan

ABSTRACT

Realization of human-computer symbiosis is an important idea in the context of ubiquitous computing. Symbiotic Computing is a concept that bridges the gap between situations in Real Space (RS) and data in Digital Space (DS). The main purpose is to develop an intelligent software application as well as establish the next generation information platform to develop the symbiotic system. In this paper, the authors argue that it is necessary to build ‘Mutual Cognition’ between human and system. Mutual cognition consists of two functions: ‘RS Cognition’ and ‘DS Cognition’. This paper examines RS Cognition, which consists of many software functions for perceiving various situations like events or humans’ activities in RS. The authors develop two perceptual functions, sitting posture recognition and human’s location estimation for a person, as RS perception tasks. In the resulting experiments, developed functions are quite competent to recognize a human’s activities.

INTRODUCTION

Recently there are a lot of efforts to develop an innovative and intelligent space, room or environment relating data stored in Digital Space (DS) to situations in Real Space (RS) in the context of ubiquitous computing (Weiser, 1991). For example, Robotic Room (Sato, Nishida, & Mizoguchi, 1996), Intelligent Room (Coen, 1998), Easy Living (Shafer et al., 1998; Brumitt et al., 2000), Intelligent Space (Lee, Appenzeller, & Hashimoto, 1998; Lee & Hashimoto, 2002), Aware Home (Kidd et al., 1999), SELF (Nishida et
Figure 1 shows a model of mutual cognition process which consists of four steps. The first step is to recognize actions of a person or a community. The next step is to infer a request from the recognized actions and send it to DS. The third step is to give valid information or services provided by DS to RS according to situation. The last step is to check feeling of contentment of the human to evaluate the process of the mutual cognition. The realization of mutual cognition can provide suitable and secure services based on a situation in RS to people. We aspire to build new man-machine (human-computer) relationships.

In other words, mutual cognition model is one of the specific models of context-awareness computing (Poslad, 2009). According to Poslad (2009), the term context-aware was first used by Schilit and Theimer (1994) in the context of mobile computing. Until now there were a lot of similar definitions of context or context-awareness (Dey & Abowd, 2000). In order to clear our purpose, we follow the definition of context and context-aware in reference (Dey & Abowd, 2000). Definition 2 is almost equivalent to the idea that symbiotic computing is trying to realize.

Definition 1: Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves.
Related Content

Entropy Quad-Trees for High Complexity Regions Detection
Rosanne Vetro, Dan A. Simovici and Wei Ding (2011). *International Journal of Software Science and Computational Intelligence* (pp. 16-33).
www.igi-global.com/article/entropy-quad-trees-high-complexity/53160?camid=4v1a

Four-Channel Control Architectures for Bilateral and Multilateral Teleoperation
www.igi-global.com/chapter/four-channel-control-architectures-bilateral/72787?camid=4v1a

Application of Machine Leaning in Drug Discovery and Development
www.igi-global.com/chapter/application-machine-leaning-drug-discovery/56207?camid=4v1a

"Automated" Archaeology: A Useless Endeavor, an Impossible Dream, or Reality?
Juan A. Barceló (2009). *Computational Intelligence in Archaeology* (pp. 1-31).
www.igi-global.com/chapter/automated-archaeology-useless-endeavor-impossible/6819?camid=4v1a