Chapter 7

Existence of Positive Solutions for Generalized p–Laplacian BVPs

Wei-Cheng Lian
National Kaohsiung Marine University, Taiwan

Fu-Hsiang Wong
National Taipei University of Education, Taiwan

Jen-Chieh Lo
Tamkang University, Taiwan

Cheh-Chih Yeh
Lunghwa University of Science and Technology, Taiwan

ABSTRACT

Using Kransnoskii’s fixed point theorem, the authors obtain the existence of multiple solutions of the following boundary value problem

(BVP)

\[\begin{align*}
(E) & \left(\varphi_p \left(u^{(n-1)}(t) \right) \right)' + f(t, u(t), ..., u^{(n-2)}(t)) = 0, \quad t \in (0,1), \\
(BC) & \begin{cases}
 u^{(i)}(0) = 0, & 0 \leq i \leq n-3, \\
 u^{(n-2)}(0) - B_0 \left(u^{(n-1)}(\xi) \right) = 0, \\
 u^{(n-2)}(1) + B_1 \left(u^{(n-1)}(\eta) \right) = 0,
\end{cases}
\end{align*} \]

where \(0 < \xi < \eta < 1\) are given. The authors examine and discuss these solutions.

DOI: 10.4018/978-1-4666-3890-7.ch007
1. INTRODUCTION

In this paper, we concern with the existence of multiple solutions for higher order boundary value problem

\[
\begin{cases}
(E) & \left| f \left(t, u(t), \ldots, u^{(n-3)}(t) \right) \right| + \phi_p(u^{(n-1)}(t)) = 0, \quad t \in [0,1), \\
(BC) & u^{(i)}(0) = 0, \quad 0 \leq i \leq n-3, \\
& u^{(n-i)}(1) + B_i(u^{(n-i)}(t)) = 0,
\end{cases}
\]

where \(n \geq 3 \) is a positive integer, \(0 < \xi < \eta < 1 \) are given and \(\varphi_p(s) \) is the p-Laplacian operator, that is, \(\varphi_p(s) = |s|^{p-2}s \) for \(p > 1 \). Clearly, \(\varphi_p \) is invertible with inverse \(\varphi_q = \varphi_p^{-1}(s) \). Here \(\frac{1}{p} + \frac{1}{q} = 1 \).

In recent years, the existence of positive solutions for nonlinear boundary value problems with p-Laplacian operator received wide attention. As we know, two point boundary value problems are used to describe a number of physical, biological and chemical phenomena. Recently, some authors have obtained some existence results of positive solutions of multi-points boundary value problems for second order ordinary differential equations (Wang & Ge, 2007; Yu, Wong, Yeh, & Lin, 2007; Zhao, Wang, & Ge, 2007; Zhou, & Su, 2007). In this paper, we establish the existence of positive solutions of general multi-points boundary value problem (BVP) and related results (Bai, Gui, & Ge, 2004; Guo & Lakshmikantham, 1988; Guo, Lakshmikantham, & Liu, 1996; He & Ge, 2004; Lian & Wong, 2000; Liu, 2002; Ma, 1999; Ma & Cataneda, 2001; Sun, Ge, & Zhao, 2007; Wang, 1997).

In order to abbreviate our discussion, throughout this paper, we assume

\((H_1) \ f \in C \left([0,1] \times [0, +\infty)^{n-1}, [0, +\infty) \right); \)

\((H_2) \ B_0(s), B_1(s) \text{ are both nondecreasing continuous and odd functions defined on } (-\infty, +\infty) \text{ and at least one of them satisfies the condition that there exists } b \geq 0 \text{ such that } 0 \leq B_i(s) \leq bs \text{ for all } s \geq 0, \ i = 1, 2. \)

2. PRELIMINARIES AND LEMMAS

Let

\[B = \left\{ u \in C^{(n-2)}[0,1]: u^{(i)} = 0, \ 0 \leq i \leq n-3 \right\}. \]

Then, \(B \) is a Banach space with norm \(\|u\| = \max_{t \in [0,1]} |u^{(n-2)}(t)| \). And let

\[K = \left\{ u \in B: u^{(n-2)}(t) \geq 0 \text{ is a concave function, } t \in [0,1] \right\}. \]

Obviously, \(K \) is a cone in \(B \).

In order to discuss our results, we need the following some lemmas:

Lemma 2.0

Assume that \(E \) is a Banach space and \(P \subset E \) is a cone in \(E \); \(\Omega_1, \Omega_2 \) are open subsets of \(E \), and \(0 \in \overline{\Omega_1} \subset \Omega_2 \). Furthermore, let \(F: P \cap \left(\overline{\Omega_2} \setminus \Omega_1 \right) \rightarrow P \) be a completely continuous operator satisfying one of the following conditions:

(i) \(\|Fx\| \leq \|x\|, \quad \forall x \in P \cap \partial \Omega_1; \) \(\|Fx\| \geq \|x\|, \quad \forall x \in P \cap \partial \Omega_2; \)

(ii) \(\|Fx\| \leq \|x\|, \quad \forall x \in P \cap \partial \Omega_2; \) \(\|Fx\| \geq \|x\|, \quad \forall x \in P \cap \partial \Omega_1. \)

Then \(F \) has a fixed point in \(P \cap \left(\overline{\Omega_2} \setminus \Omega_1 \right) \).