There are three fundamental systems of communication: information, explanation, and imagination (Table 1). The first system of communication—viz., information—is analytic in nature. It relies on the drawing of distinctions and the parsing of differences between objects in the world. This allows us to identify objects in the world and attribute characteristics to them. In doing so, we separate out elements of the world, and we isolate and define their specific features. Such analytic distinctions are very powerful. Yet their strength, which is their capacity to distinguish objects and attributes, is also their weakness. They are, by their nature, limited in their connective force. For what distinguishes does not connect. In analytic forms of communication, we are limited to connecting object and attribute, name and quality. That is more or less as far as it goes. It is rather the second system of communication that connects...
the propositions we make about the heterogeneous elements of the world. This system of communication takes the names and descriptions, the analytic reports and statements that we make, and weaves them together. This second system of communication is commensurate with knowledge in the full sense of that word. Knowledge as a system of communication involves more than information. This is true no matter how sophisticated the analytic distinctions we draw may be. Knowledge proper requires communicative operations such as inference, argument, explanation and narration. Knowledge is discursive. It involves the moving from one act of cognition to another in a systemic “chain” or “train”. It involves our capacity to reason. However, just as information has its limits, so does reason. Whether we explain, argue, or narrate things, all discourse reaches a point of diminishing returns.

Discourse and reason knit observations, reports, analytic definitions, data and statements into lucid structures whose “chains” persuade us, but only ever up to a point. All kinds of discursive knowledge, including scientific, technological, legal, political, social, and aesthetic knowledge, reach a limit at which point they cease to satisfy us. We are left feeling that the explanation or narration is not adequate, however elaborate it may be. This is the point at which arguments run out and proofs appear to be improvable. At this juncture, knowledge stagnates. How then, when faced with such conditions, is knowledge advanced, developed or kick-started? The invigoration of knowledge happens because of acts of imagination. Imagination is synthetic, not analytic. It relies on intuition, analogy, and the ability of creating resemblances between things rather than drawing distinctions. Analogical-synthetic acts of imagination overcome the periodic stagnation of the discursive system of communication. Imagination plays the central role in audacious kinds of problem solving, visualisation, projection, anticipation, and creative thought.

INFORMATION, EXPLANATION AND IMAGINATION

We all begin life in a blur. The most important thing a child learns is to distinguish things (objects, words, events, deeds). The child learns how to differentiate “mother”, “father”, “food”, “toy”, “flower”, and “car” from the primordial smear into which we are all born. Our first communicative acts are also our first way of systematising the world for ourselves. These acts are principally acts of distinction. We use them to carve up the world, to differentiate and distinguish one thing from another. With the passage of time acts of distinction grow more sophisticated. The same occurs also on a social level. Immanuel Kant, in the *Critique of Pure Reason*, made the point that acts of distinction rely on a more fundamental cognitive unity (Kant, 1999). Every object that is differentiated out from the experiential smudge of sensibility has its own spatial and temporal unity.

Table 1. Three fundamental systems of communication: information, explanation and imagination

<table>
<thead>
<tr>
<th>System</th>
<th>Information</th>
<th>Explanation</th>
<th>Imagination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Style</td>
<td>Analytic</td>
<td>Elaborative</td>
<td>Antonymic</td>
</tr>
<tr>
<td>Cognitive Media</td>
<td>Proposition</td>
<td>Argument</td>
<td>Analogy</td>
</tr>
<tr>
<td>Cognitive Method</td>
<td>Observation</td>
<td>Reason</td>
<td>Intuition</td>
</tr>
<tr>
<td>Cognitive Outcome</td>
<td>Differentiation</td>
<td>Inference</td>
<td>Resemblance</td>
</tr>
<tr>
<td>Communicative Form</td>
<td>Report</td>
<td>Discourse</td>
<td>Wit</td>
</tr>
<tr>
<td>Cognitive Function</td>
<td>Distinction</td>
<td>Knowledge</td>
<td>Creation</td>
</tr>
</tbody>
</table>
Related Content

Creativity and Knowledge-Based Urban Development in a Nordic Welfare State: Combining Tradition and Development in the Helsinki Metropolitan Area
www.igi-global.com/chapter/creativity-knowledgebased-urban-development-nordic/41693?camid=4v1a

Testable Theory Development for Small-N Studies: Critical Realism and Middle-Range Theory
www.igi-global.com/article/testable-theory-development-small-studies/38999?camid=4v1a

Towards a New Approach for Measuring Innovation: The Innovation-Value Path
www.igi-global.com/chapter/towards-new-approach-measuring-innovation/48940?camid=4v1a

Improving Supply Chain Performance through the Implementation of Process Related Knowledge Transfer Mechanisms
Stephen McLaughlin (2009). International Journal of Knowledge Management (pp. 64-86).
www.igi-global.com/article/improving-supply-chain-performance-through/2752?camid=4v1a