Chapter 7
Dynamic Modeling, Simulation and Velocity Control of Rocker–Bogie Rover for Space Exploration

Pushpendra Kumar
Indian Institute of Technology Roorkee, India

Pushparaj Mani Pathak
Indian Institute of Technology Roorkee, India

ABSTRACT
Wheeled mobile rovers are being used in various missions for planetary surface exploration. In this paper a six-wheeled rover with rocker-bogie structure has been analyzed for planar case. The detailed kinematic model of the rover was built and the dynamic model was derived based on bond graph. The simulation studies were performed for obstacle climbing capability of the rover. It was observed from the study that rover can pass through plane surface, inclined surface, and inclined ditch without any control on the actuators of the rover. However, it fails to cross a vertical ditch so a velocity controller was designed. It consists of a proportional integral (PI) controller and reduced model of the rover. It is found from simulation and animation studies that with the proposed velocity controller the rover is able to cross the vertical ditch.

1. INTRODUCTION
Many planetary exploration rovers have been developed since 1960s for planetary exploration. Based on the features of the mobile mechanism in robots, planetary exploration rovers have various types such as wheeled, legged and tracked.

DOI: 10.4018/978-1-4666-3634-7.ch007
Dynamic Modeling, Simulation and Velocity Control

with rocker bogie mechanism has superior adaptability and obstacle climbing capability. These rovers have been used in Mars Rovers (Lindemann, Bickler, Harrington, Ortiz, & Voorhees, 2006; Lindemann, 2005).

The research in exploration rovers has been devoted to analyze the performance of exploration rovers based on different types of suspension systems. Bai-chao, Rong-ben, Lu, Li-sheng, and Lie (2007) proposed a new type of suspension system formed by a positive and a negative quadrilateral levers mechanism. Thueer, Siegwart, and Backes, Planetary Vehicle Suspension Options (2008) studied the locomotion performance of different suspension types in order to find the rover that matches best for any mission requirement. Their performance was evaluated on hard and loose soil. Thueer, Krebs, Siegwart, and Lamon (2007) presented the performance optimization tool based on a static approach to compare and optimize the rover chassis in quick and efficient way. Thueer and Siegwart (2007) analyzed different rovers based on kinematic model and the optimal velocities of all wheels were used for characterization of the suspension of different rovers. Hacot, Dubowsky, and Bidaud (1998) presented the mechanics of rover and method for solving the inverse kinematics of the rocker-bogie rover. The quasi-static force analysis has been described for the rover. Li, Gao, and Deng (2008) built the mobility performance indexes based on work conditions and established an optimized mathematical model of suspension parameters of rocker-bogie rover. Mann and Shiller (2005) described a measure of stability of rocker-bogie rover for a range of acceptable velocities and accelerations that satisfy a set of dynamic constraints. Yongming, Xiaoliu, and Wencheng (2009) described the quasi-static mathematical model of rocker-bogie rover. Obstacle climbing capabilities of the rover were analyzed. Most of the rover models reported in literature is based on kinematic relations. Rover dynamic relations have not been derived.

In this paper the kinematic model of the rocker-bogie rover is developed. This kinematic model is used in deriving the dynamic model using bond graph technique (Mukherjee, Karmarkar, & Samantaray, 2006; Karnopp, Margolis, & Rosenberg, 2000). The dynamic model includes the model of the motor and ground reaction. The

---

Figure 1. Schematic diagram of rocker bogie rover

![Schematic diagram of rocker bogie rover](image1)

Figure 2. Planar model of rocker bogie rover

![Planar model of rocker bogie rover](image2)
Related Content

Robotics Community Experiences: Leveraging Informal Design and Learning Experiences to Motivate Urban Youth in STEM
[www.igi-global.com/chapter/robotics-community-experiences/126038?camid=4v1a](www.igi-global.com/chapter/robotics-community-experiences/126038?camid=4v1a)

Towards Emotion Classification Using Appraisal Modeling
[www.igi-global.com/article/towards-emotion-classification-using-appraisal-modeling/138578?camid=4v1a](www.igi-global.com/article/towards-emotion-classification-using-appraisal-modeling/138578?camid=4v1a)

Visual Control of an Autonomous Indoor Robotic Blimp
[www.igi-global.com/chapter/visual-control-of-an-autonomous-indoor-robotic-blimp/84926?camid=4v1a](www.igi-global.com/chapter/visual-control-of-an-autonomous-indoor-robotic-blimp/84926?camid=4v1a)

Gesture Learning by Imitation Architecture for a Social Robot
[www.igi-global.com/chapter/gesture-learning-by-imitation-architecture-for-a-social-robot/84899?camid=4v1a](www.igi-global.com/chapter/gesture-learning-by-imitation-architecture-for-a-social-robot/84899?camid=4v1a)