Chapter 14

Load Balancing Aware Multiparty Secure Group Communication for Online Services in Wireless Mesh Networks

Neeraj Kumar
Neeraj Kumar, CSED, Thapar Univesity, Patiala (Punjab), India

ABSTRACT

The internet offers services for users which can be accessed in a collaborative shared manner. Users control these services, such as online gaming and social networking sites, with handheld devices. Wireless mesh networks (WMNs) are an emerging technology that can provide these services in an efficient manner. Because services are used by many users simultaneously, security is a paramount concern. Although many security solutions exist, they are not sufficient. None have considered the concept of load balancing with secure communication for online services. In this paper, a load aware multiparty secure group communication for online services in WMNs is proposed. During the registration process of a new client in the network, the Load Balancing Index (LBI) is checked by the router before issuing a certificate/key. The certificate is issued only if the value of LBI is less than a predefined threshold. The authors evaluate the proposed solution against the existing schemes with respect to metrics like storage and computation overhead, packet delivery fraction (PDF), and throughput. The results show that the proposed scheme is better with respect to these metrics.

1. INTRODUCTION

Over the years, wireless mesh network (WMN) has gained lot of attention due to unique features such as multihop nature, easily scalable and maintainable with low network cost applicable to wide range of applications, and self healing and self configurable nature (Akyildiz, Wang, & Wang, 2005). A generalized architecture of the WMN consists of mesh gateways (MG), mesh routers (MRs) and mesh clients (MCs). Every node in WMNs may acts as a router, forwards the packet to other nodes. Some of these routers may act as gateways which are directly connected to
internet (1). A WMN combines the fixed network (backbone) and mobile network (backhaul). Every node in WMNs can act as a router and is able to forward the packet to other nodes. A node which didn’t have access to the backbone network can establish a connection by routing the packets from a neighbouring node that has a backbone network connection. MCs in WMNs connect to the internet using gateways which act as a relay nodes as shown in Figure 1.

There are number of applications where WMN can be used such as video on demand, Voice over IP (VoIP), online single/multiple player/players multimedia games etc. Because users accessing the different services are located in different domains, security is a major concern for all these service provided by the underlying network. Only the legitimate users are allowed to access the available resources over the network, i.e., before performing any operation in the network these users must use the key provided by the trusted party for a particular duration. The key to these users is given for a particular time interval and may be renewed for the next duration by trusted party so that only the authenticated person can use the available services of the network. Because most of the traffic flows from mesh routers (MRs) to mesh clients (MCs), so key is kept at MRs for the duration of communication between MRs and MCs. Broadly, there are two types of attacks boundaries namely as outside and inside within which an attacker can access the network resources. The attacker from outside the boundary can destroy the MRs or MCs while within the inside boundary it can access the messages that are not meant for it (2).

Although security in wireless networks has been investigated by various researchers from different prospective such as data confidentiality, integrity, trust management etc. The existing solutions for the security are divided into two folds namely as for centralized and distributed

Figure 1. Scenario in wireless mesh network
Related Content

The User as a Service
www.igi-global.com/chapter/user-service/63680?camid=4v1a

Optimizing Inter-Domain Internet Multicast
www.igi-global.com/chapter/optimizing-inter-domain-internet-multicast/16880?camid=4v1a

HTTP Traffic Model for Web2.0 and Future WebX.0
www.igi-global.com/chapter/http-traffic-model-web2-future/77409?camid=4v1a

Autonomic Networking
www.igi-global.com/chapter/autonomic-networking/16836?camid=4v1a