Chapter 9
Forward and Backward Chaining with P Systems

Sergiu Ivanov
Academy of Sciences of Moldova, Moldova & Technical University of Moldova, Moldova

Artiom Alhazov
Academy of Sciences of Moldova, Moldova & Università degli Studi di Milano-Bicocca, Italy

Vladimir Rogojin
Helsinki University, Finland & Academy of Sciences of Moldova, Moldova

Miguel A. Gutiérrez-Naranjo
Academy of Sciences of Moldova, Moldova & University of Sevilla, Spain

ABSTRACT

One of the concepts that lie at the basis of membrane computing is the multiset rewriting rule. On the other hand, the paradigm of rules is profusely used in computer science for representing and dealing with knowledge. Therefore, establishing a “bridge” between these domains is important, for instance, by designing P systems reproducing the modus ponens-based forward and backward chaining that can be used as tools for reasoning in propositional logic. In this paper, the authors show how powerful and intuitive the formalism of membrane computing is and how it can be used to represent concepts and notions from unrelated areas.

1. INTRODUCTION

The use of rules is one of the most common paradigms in computer science for dealing with knowledge. Given two pieces of knowledge V and W, expressed in some language, the rule $V \rightarrow W$ is usually considered as a causal relation between V and W. This representation is universal in science. For example, in chemistry, V and W can be metabolites and $V \rightarrow W$ a chemical reaction. In this case, V represents the reactants which are consumed in the reaction and W is the obtained product. In propositional logic, $V \rightarrow W$, with $V = v_1 \lor v_2 \lor \ldots \lor v_n$ and $W = w_1 \lor w_2 \lor \ldots \lor w_m$, is a representation of the clause

$\neg v_1 \lor \neg v_2 \lor \ldots \lor \neg v_n \lor w_1 \lor w_2 \lor \ldots \lor w_m$.

DOI: 10.4018/978-1-4666-4253-9.ch009
An important problem is deriving new knowledge: given a knowledge base $KB = (A, R)$, where A is a set of known atoms and R is a set of rules of type $V \rightarrow W$, the problem is to know if a new atom g can be obtained from the known atoms and rules. We will call this problem a reasoning problem and it will be denoted by $\{A, R, g\}$.

In computer science, there are two basic methods for seeking a solution of a reasoning problem, both of them based on the inference rule known as Generalized Modus Ponens: the former is data-driven and it is known as forward chaining, the latter is query-driven and it is called backward chaining (Apt, 1990).

As one should observe, even though logic inference rules and multiset rewriting rules originate from totally different areas of mathematics and computer science and represent unrelated notions, their concepts have some similarities. In particular, no information about the ordering of elements in both left- and right-hand sides of the rules of both types is used. On the other hand, the inference rules could be thought of as set rewriting rules, while multiset rewriting rules operate at multisets. However, multiset rewriting rules could be interpreted as set rewriting rules if one ignores the multiplicity of elements of the multiset. Therefore we could represent sets of facts in P systems as multisets of objects and inference rules as multiset rewriting rules. When one considers the set of facts represented in a region of a P system, one only considers the underlying set of the region’s multiset.

2. DEFINITIONS

2.1. Formal Logic Preliminaries

An atomic formula (also called an atom) is a formula with no deeper structure. An atomic formula is used to express some fact in the context of a given problem (Jago, 2007). The universal set of atoms is denoted with U. U is finite. For a set A, $|A|$ is the number of elements in this set (cardinality).

A knowledge base is a construct $KB = (A, R)$ where $A = \{a_1, a_2, \ldots, a_n\} \subseteq U$ is the set of known atoms and R is the set of rules of the form $V \rightarrow W$, with $V, W \subseteq U$.

In propositional logic, the derivation of a proposition is done via the inference rule known as Generalized Modus Ponens:

$$\begin{align*}
P_1, P_2, \ldots, P_n, \quad &P_1 \land P_2 \land \ldots \land P_n \rightarrow Q \\
\quad &P_i \\
\quad \vdash \quad &Q
\end{align*}$$

The meaning of this is as follows: if $P_1 \land P_2 \land \ldots \land P_n \rightarrow Q$ is a known rule and $\{P_1, P_2, \ldots, P_n\} \subseteq A$ then, Q can be derived from this knowledge. Given a knowledge base $KB = (A, R)$ and an atomic formula $g \in U$, we say that g can be derived from KB, denoted by $KB \vdash g$, if there exists a finite sequence of atomic formulas F_1, F_2, \ldots, F_k such that $F_k = g$ and for each $i \in \{1, 2, \ldots, k\}$ one of the following claims holds:

- $F_i \in A$;
- F_i can be derived via Generalized Modus Ponens from R and the set of atoms $\{F_1, F_2, \ldots, F_{i-1}\}$.

It is important to remark that for rules $V \rightarrow W$ we can require $|W| = 1$ without losing generality (Lloyd, 1987).

This definition of derivation provides two algorithms to answer the question of knowing if an atom g can be derived from a knowledge base KB. The first one is known as forward chaining and it is an example of data-driven reasoning, i.e., the starting point is the known data. The dual situation is the backward chaining, where the reasoning is query-driven (Bratko, 2001).

A deep study of both algorithms is out of the scope of this paper. We briefly recall their basic forms.
Related Content

Collaboration and Competition Process: A Multi-Teams and Genetic Algorithm Hybrid Approach
Ping-Teng Chang, Chih-Sheng Lin, Kuo-Chen Hung, Han-Hsiang Lee and Ching-Hsiang Chang (2010).
International Journal of Artificial Life Research (pp. 62-90).
www.igi-global.com/article/collaboration-competition-process/46030?camid=4v1a

Evolutionary Path Planning for Robot Navigation Under Varying Terrain Conditions
Terrence P. Fries (2009). Handbook of Research on Artificial Immune Systems and Natural Computing:
Applying Complex Adaptive Technologies (pp. 361-382).
www.igi-global.com/chapter/evolutionary-path-planning-robot-navigation/19653?camid=4v1a

Agent-Based Modeling with Boundedly Rational Agents
(pp. 225-245).
www.igi-global.com/chapter/agent-based-modeling-boundedly-rational/21132?camid=4v1a

What Have Computational Models Ever Done for Us?: A Case Study in Classical Conditioning
www.igi-global.com/article/what-have-computational-models-ever-done-for-us/103852?camid=4v1a