Chapter XVI
Analyst-Ready Large Scale Real Time Information Retrieval Tool for E-Governance

Eugene Santos, Jr.
Dartmouth College, USA

Eunice E. Santos
Virginia Polytechnic Institute & State University, USA

Hien Nguyen
University of Wisconsin, Whitewater, USA

Long Pan
Virginia Polytechnic Institute & State University, USA

John Korah
Virginia Polytechnic Institute & State University, USA

Huadong Xia
Virginia Polytechnic Institute & State University, USA

Fei Yu
Dartmouth College, USA

Deqing Li
Dartmouth College, USA

ABSTRACT

With the proliferation of the Internet and rapid development of information and communication infrastructure, E-governance has become a viable option for effective deployment of government services and programs. Areas of E-governance such as Homeland security and disaster relief have to deal with vast amounts of dynamic heterogeneous data. Providing rapid real-time search capabilities for such databases/sources is a challenge. Intelligent Foraging, Gathering, and Matching (I-FGM) is an established framework developed to assist analysts to find information quickly and effectively by incrementally collecting, processing and matching information nuggets. This framework has previously been used to develop a distributed, free text information retrieval application. In this chapter, we provide a comprehensive solution for the E-GOV analyst by extending the I-FGM framework to image collections and creating a “live” version of I-FGM deployable for real-world use. We present a Content Based Image
Analyst-Ready Large Scale Real Time Information Retrieval Tool for E-Governance

INTRODUCTION

One of the main challenges in E-governance is to effectively and efficiently find relevant information from vast amounts of dynamic heterogeneous sources quickly under the pressures and limitations of time, supporting tools, and resources. For instance, when natural disasters such as Hurricane Katrina (2005) or the Asian Tsunami of 2004 happen, we need to quickly locate the areas that are most affected and collect information in order to estimate the amount of relief items such as medicines, foods, and drinking water. Unfortunately, in such a situation, frontline communications are typically chaotic and/or there are too many channels of information from different sources that make the retrieval of relevant pieces of information a lot harder. For “hot spots” such as disaster relief areas, combat zones, etc., information is changing rapidly and as such, there is only a small window of time during which information remains valid. Additionally, various types of data representation are used such as images, blogs, maps, news reports, audios, and videos. Each type of data format contains important and indispensable information for the various governmental agencies. Therefore, in order to better assist these agencies in addressing these challenges, there is a clear and urgent need to develop a system that rapidly provides real-time retrieval capabilities of heterogeneous sources of information. There are three main issues that we need to address: (i) how to gather and retrieve information quickly in a real-time setting given the limitations of resources and time; (ii) how to address the problem of heterogeneous data; and, (iii) how to improve retrieval success.

We address the above issues by developing a framework for intelligent foraging, gathering, and matching (I-FGM) that incrementally and distributively gathers, processes, and matches information nuggets to assist users at finding information quickly and effectively. In our previous work (Santos et al., 2005, 2006), I-FGM has been empirically demonstrated to be an effective tool for text retrieval on large and dynamic search spaces. Even though unstructured text is a typical format for most databases/sources, images are also popular with significant support from commercialized search engines such as Google, Yahoo!, and MSN. In order to demonstrate that I-FGM is a general framework for information retrieval, it is necessary to study the system’s ability at effectively handling such heterogeneous databases which contain at least text and images. In this chapter, we apply the I-FGM framework on image collections by using a Content Based Image Retrieval (CBIR) method. We approach this by incrementally processing the images, extracting low-level features, and then mapping them to higher level concepts. The novelties of our approach lie with the distributed storage, and incremental processing and matching of information nuggets extracted from a region-based wavelet image retrieval scheme. We deploy a concept-based image retrieval algorithm that maps low level features