Handbook of Research on Creative Problem-Solving Skill Development in Higher Education

Part of the Advances in Higher Education and Professional Development Book Series

Chunfang Zhou (Aalborg University, Denmark)

Description:

Developing students’ creative problem-solving skills is paramount to today’s teachers, due to the exponentially growing demand for cognitive plasticity and critical thinking in the workforce. In today’s knowledge economy, workers must be able to participate in creative dialogue and complex problem-solving. This has prompted institutions of higher education to implement new pedagogical methods such as problem-based and case-based education.

The Handbook of Research on Creative Problem-Solving Skill Development in Higher Education is an essential, comprehensive collection of the newest research in higher education, creativity, problem solving, and pedagogical design. It provides the framework for further research opportunities in these dynamic, necessary fields. Features work regarding problem-oriented curriculum and its applications and challenges.

Readers:

This book is essential for policy makers, teachers, researchers, administrators, students of education.

Topics Covered:

- Competency-Based Training
- Creativity Techniques
- Critical Thinking
- Curriculum Design
- Instruction Methods
- Leadership of Students
- Learning Style
- Peer Learning
- Self-Directed Learning
- Student-centered Learning

Hardcover + Free E-Access: $295.00
Free Hardcover: $295.00
1 Year Online Subscription: $135.00
2 Year Online Subscription: $230.00

Order Information
Phone: 717-533-8845 x100
Toll Free: 1-866-342-6657
Fax: 717-533-8661 or 717-533-7115
Online Bookstore: www.igi-global.com
Table of Contents
Foreword
Preface
Acknowledgments

Section 1: Point of Departure

Chapter 1
Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies
Chunfang Zhou
Aalborg University, Denmark

Section 2: Creativity across Disciplines

Chapter 2
Thinking Inside the Box: Educating Leaders to Manage Constraints
Kelsey E. Medeiros, Logan L. Watts, Michael D. Mumford
The University of Oklahoma, United States

Chapter 3
Scientific Creativity in Psychology: A Cognitive – Conative Approach
Christiane Kirsch
University of Luxembourg, Luxembourg
Todd Lubart, Herie (HenderikA) de Vries
Université Paris Descartes, France
Claude Houssemand
University of Luxembourg, Luxembourg

Chapter 4
A Creativity and Innovation Course for Engineers
Giovanni Emanuele Corazza, Sergio Agnoli, and Sara Martello
University of Bologna, Marconi Institute for Creativity, Italy

Chapter 5
Teaching Creative Problem Solving in Engineering Education
René Victor Valqui Vidal
Technical University of Denmark, Denmark

Chapter 6
Creativity Development through Inquiry-based Learning in Biomedical Sciences
Gemma Rodríguez, Josep-Eladi Baños, and Mar Carrió
Universitat Pompeu Fabra, Spain

Chapter 7
Distributed Problem-Solving: How Artists’ Participatory Strategies Can Inspire Creativity in Higher Education
Tatiana Chemi
Aalborg University, Denmark

Chapter 8
Creative Life Experiences Among Students in Medical Education
Miao Yu, Jianxin Li, Wei Wang
China Medical University, China

Section 3: Instruction Models

Chapter 9
International Center for Studies in Creativity: Curricular Overview and Impact of Instruction on the Creative Problem-Solving Attitudes of Graduate Students
Gerard J. Puccio, Susan Keller Mathers, Selcuk Acar
State University of New York, USA
Nur Cayirdag Acar
Istanbul Sabahattin Zaim University, Turkey

Chapter 10
Problem Solving at the Edge of Disciplines
Andy M. Connor, Ricardo Sosa, Anna G. Jackson & Stefan Marks
Auckland University of Technology, New Zealand

Chapter 11
Enhancing Students’ Critical Thinking through Portfolios: Portfolio Content and Process of Use
Zineb Djoub
Abdellahmid Ibn Badis University, Algeria

Chapter 12
An Exploration on Darkness within Doctoral Education: Creative Learning Approaches of Doctoral Students
Søren S.E. Bengtzen
Aarhus University, Denmark

Chapter 13
Integrating Creative Problem Solving Skills into Higher Education Classroom
Cyndi Burnett and Susan Keller-Mathers
State University of New York, USA

Section 4: PBL and ICT

Chapter 14
Design thinking for Creative Problem Solving in Higher Education: How Students Become Dedicated Creative Problem Solvers
Julia von Thienen, Adam Royalty, and Christoph Meinel
University of Potsdam, Germany

Chapter 15
Students’ Learning Experiences in Project-Based Learning (PtBL): With Pain Comes Gain
Roxanne DuVivier, Carol Logan Pattu, Sheri Stover
Wright State University, USA

Chapter 16
Advocating Problem-Based Learning and Creative Problem Solving Skills in Global Education
Kipokin Kasemsap
Suan Sunancha Rajabhat University, Thailand

Chapter 17
Instructional Design Technology in Higher Education System: Role and Impact on Developing Creative Learning Environments
Lakshmi Sunil Prakash, Dinesh Kumar Sain
University of Queensland, Brisbane, Australia

Chapter 18
Developing Creative Problem Solvers and Professional Identity by Information Technology Communication (ICT) in Higher Education
Line Helverskov Horn, Md. Saifuddin Khalid
Aalborg University, Denmark

Chapter 19
Reaching ‘Creating’ in Bloom’s Taxonomy: the Merging of Heutagogy and Technology in Online Learning
Colleen Halupa
A.T. Still University and LeTourneau University, USA

Chapter 20
Applying Blooms Digital Taxonomy to Address Creativity and Second Order Digital Divide in Internet Skills
Aparna Purushothaman
Aalborg University, Denmark

Section 5: Reflection and Conclusion

Chapter 21
Creative Problem Framing in Higher Education
Ricardo Sosa, Andy Connor,
Auckland University of Technology, New Zealand
Bruce Corson
Corson Associates, California, United States

Chapter 22
Chapter 23
New Paradigm of Creativity: From Newtonian Mechanics to Quantum Mechanics and Higher Education Development
Masaaki Hasegawa
Third Vision, Spain

Chapter 24

Chunfang Zhou, Ph.D., is an Assistant Professor in Department of Learning and Philosophy at Aalborg University, Denmark. Chunfang finished her Bachelor study (majoring in Industrial Automation and Information Science) and Master study (majoring in Philosophy of Science and Technology) in China. In 2012, she finished Ph.D. study on ‘Group Creativity Development in Engineering Education in Problem and Project-Based Learning (PBL) Environment in Denmark’. Since 2004, Chunfang has located her research in the area of Science, Technology and Society (STS), with a particular focus on creativity study and its relations to STEM education, group learning, organizational innovation, Problem-Based Learning (PBL), engineering and technology design, and Information Communication Technology (ICT). In 2007, her master thesis “Core Competence Development in Science and Technology Groups in Universities in Liaoning Province” was awarded as the “Best Master Thesis” by Northeastern University (NEU), China. In 2009, her published journal article “Research on the Research Group’s Structure and Creative Climate of Universities in Liaoning Province, China” won the “Annual Article Award” of Japan Creativity. In 2013, she was funded an individual research project ‘Fostering Creativity in Higher Education: A Comparative Study on Pedagogical Strategies of Learning by Projects between Denmark and China’, by Danish Research Council that leads her to recent contributions to cross-cultural studies on creativity in learning contexts.