Eye-Tracking Technology Applications in Educational Research

Part of the Advances in Business Information Systems and Analytics Book Series

Christopher Was (Kent State University, USA), Frank Sansosti (Kent State University, USA) and Bradley Morris (Kent State University, USA)

Description:
Since its inception, eye-tracking technology has evolved into a critical device in psychological and sociological settings. By tracking eye movement, one can conduct lie detection, learn about neuropsychology, and measure reading response. Recently, these technologies have been implemented in Educational and School Psychology as a way to assess how students interact with content.

Eye-Tracking Technology Applications in Educational Research enriches the current pool of educational research with cutting-edge applications of eye tracking in education. Seeks to advance this emergent, interdisciplinary field.

Readers:
This publication collects a diverse group of researchers exploring all aspects of this technology as an essential reference for educators, researchers, administrators, and advanced graduate students.

Topics Covered:
- Attentional Anchors
- Computer-Based Early Literacy Media
- Graphic Organizers
- Language Comprehension
- Mathematical Visuals
- Multimedia Learning
- Physiological Measurement
- Spatial Thinking
- Word Identification

Hardcover + Free E-Access: $205.00
E-Access + Free Hardcover: $205.00

Order Information
Phone: 717-533-8845 x100
Toll Free: 1-866-342-6657
Fax: 717-533-8661 or 717-533-7115
Online Bookstore: www.igi-global.com
Table of Contents

Preface
Acknowledgment

METHODOLOGICAL ISSUES

Chapter 1
Eye-tracking as a research methodology in educational context: The spanning framework
Pedro Rodrigues, Instituto Universitário de Lisboa, Portugal
Pedro J. Rosa, Universidade Lusófona de Humanidades e Tecnologias and Instituto Superior Manuel Teixeira Gomes, Portugal

Chapter 2
Using Eye Movements to Study Reading Processes: Methodological Considerations
Anne Cook, University of Utah, USA
Wei Wei, University of Utah, USA

Chapter 3
Investigating Mindsets and Motivation through Eye-Tracking and other Physiological Measures
Shanon R. Zentall, University of Akron, USA
Angela Junglen, Kent State University, USA

EYE-TRACKING AND LANGUAGE COMPREHENSION

Chapter 4
Eye Movement Behavior and Individual Differences in Word Identification during Reading
Jocelyn R. Folk, Kent State University, USA
Michael A. Eskensen, Kent State University, USA

Chapter 5
Eye Tracking and Spoken Language Comprehension
Elizabeth Kaplan, Harvard University, USA
Tatyana Levani, Harvard University, USA
Jesse Snedeker, Harvard University, USA

MULTIMEDIA LEARNING

Chapter 6
Tracking Children's Interactions with Traditional Text and Computer-based Early Literacy Media
Dominica DePasquale, Wilfrid Laurier University, Canada
Eileen Wood, Wilfrid Laurier University, Canada
Alexandra Gottardo, Wilfrid Laurier University, Canada
Jeffery A. Jones, Wilfrid Laurier University, Canada
Rachel Kaplan, Wilfrid Laurier University, Canada
Arden DeMarco, Wilfrid Laurier University, Canada

Chapter 7
The Use of Eye-gaze to Understand Multimedia Learning
Malinda Desjarlais, Mount Royal University, Canada

Chapter 8
The Use of Eye-gaze as a Research and Instructional Tool in Multimedia Learning
Katharina Schelter, Leibniz-Institut für Wissensmedien
Alexander Eitel, Leibniz-Institut für Wissensmedien

MATHEMATICS LEARNING

Chapter 9
Eye-Tracking the Emergence of Attentional Anchors in a Mathematics Learning Tablet Activity
Shakila Shayan, Utrecht University, Netherlands
Dor Abrahamsson, University of California, Berkeley, USA
Arthur Bakker, Utrecht University, Netherlands
Caroline A.C.G. Duijzer, Utrecht University, Netherlands
Marieke van der Schaaf, Utrecht University, Netherlands

Chapter 10
How Revisions to Mathematical Visuals Affect Cognition: Evidence from Eye Tracking
Virginia Clinton, University of North Dakota, USA
Jennifer L. Cooper, Wesleyan University, USA
Joseph E Michaelis, University of Wisconsin - Madison, USA
Martha W. Alibali, University of Wisconsin – Madison, USA
Mitchell J. Nathan, University of Wisconsin – Madison, USA

VISUAL-SPATIAL LEARNING

Chapter 11
Using Eye-Tracking Technology to Understand How Graphic Organizers Aid Student Learning
Linlin Luo, University of Nebraska Lincoln, USA
Kenneth A Kiewra, University of Nebraska-Lincoln, USA
Markey S Peteranetz, University of Nebraska-Lincoln, USA
Abraham E Flanigan, University of Nebraska-Lincoln, USA

Chapter 12
The Use of Eye-Tracking in Spatial Thinking Research
Alina Nazareth, Temple University, USA
Rosalie Odean, Florida International University, USA
Shannon M Pruden, Florida International University, USA

SPECIAL POPULATIONS

Chapter 13
The Visual Word Paradigm Children with Spoken Language Disorders
Llorenç Andreu, Universitat Oberta de Catalunya, Spain
Mónica Sanz-Torrent, Universitat de Barcelona, Spain

Chapter 14
Eye-Tracking Technology: A Closer Look at Eye-Tracking Paradigms with High-Risk Populations
Chandni Parikh, University of Arizona, USA

Christopher Was is an Associate Professor in the Department of Psychological Sciences at Kent State University. He began his career working in a residential treatment facility for adjudicated youth as a teacher and research coordinator for the Odyssey Project, sponsored by the Child Welfare League of America. He received his Ph.D. from the University of Utah in Educational Psychology, with an emphasis in learning, memory and cognition. His research interests are in the areas of models of working memory, complex cognitive processes, and metacognition. More recently his research has focused on implicit learning processes and their relationship to intelligence. Dr. Was uses eye-tracking technology in his research to investigate the connection between implicit cognitive processing and the explicit learning that results from these processes. He has published over 50 peer-reviewed papers, chapters, and refereed conference proceedings in the areas of learning, educational psychology, and cognitive psychology.
Frank J. Sansosti, Ph.D., NCSP is an Associate Professor in the School Psychology at Kent State University. He has extensive experience working with individuals with developmental disabilities in both school and clinic settings. As a practitioner he provided coaching and technical assistance for early intervention and best practice approaches for students with low-incidence disabilities in inclusive settings, and coordinated efforts between parents, teachers, administrators, and district level personnel. Currently, Dr. Sansosti’s primary research and professional interests focus on the development and implementation of behavioral and social skills interventions for individuals with developmental delays, as well as the use of eye-tracking technologies as a tool for investigating the academic and social difficulties of students with disabilities. Dr. Sansosti is an active researcher, as evidenced by over 40 publications and more than 75 professional workshops at local, regional, national, and international venues.

Bradley J. Morris is a Developmental Cognitive Scientist whose research program includes basic research in cognitive development and its application in designing and assessing effective STEM instruction in formal and informal settings. His research focuses on the development of Scientific and Mathematical reasoning and Motivation. The goal of his research program is to identify mechanisms underlying children’s reasoning (e.g., strategy acquisition) and motivation (e.g., praise type) using a variety of experimental methods (e.g., eye tracking), technological implementations (e.g., apps that measure informal STEM engagement), and computational models.