Applying Nanotechnology for Environmental Sustainability

Part of the Advances in Environmental Engineering and Green Technologies Book Series

Sung Hee Joo (University of Miami, USA)

Description:

Nanomaterials have been used for years in industries such as consumer products, textile production, and biomedicine, yet the literature outlining their use in environmental causes is limited. The safety, toxicity, transportation, and removal of this technology must be addressed as nanotechnology and nanomaterial use is expected to grow.

Applying Nanotechnology for Environmental Sustainability addresses the applications of nanomaterials in the field of environmental conservation and sustainability, and analyses the potential risks associated with their use. It elucidates the scientific concepts and emerging technologies in nanoscience and nanotoxicity by offering a wide range of innovative topics and reviews regarding its use.

Readers:

This publication is essential for environmental engineers, researchers, consultants, students, regulators, and professionals in the field of nanotechnology.

Topics Covered:

- Bionanosensors
- Contaminant Removal
- Disinfection Techniques
- Ecotoxicity
- Engineered Membranes
- Environmental Media
- Nanostructures
- Performance Evaluation
- Sustainable Crop Production
- Water Treatment

Hardcover + Free E-Access: $225.00 E-Access + Free Hardcover: $225.00

Order Information
Phone: 717-533-8845 x100
Toll Free: 1-866-342-6657
Fax: 717-533-8661 or 717-533-7115
Online Bookstore: www.igi-global.com
Table of Contents

Preface

Section 1

Chapter 1
Evaluation of Currently Available Techniques for Studying Colloids in Environmental Media: Introduction to Environmental Nanometrology
Allan Philippe, University Koblenz-Landau, Germany

Chapter 2
Nanotechnology for Filtration-Based Point-of-Use Water Treatment: A Review of Current Understanding
Kathryn Gwenyth Nunnelliey, James A Smith, University of Virginia, USA

Chapter 3
Nanotechnology in engineered membranes: Innovative membrane material for water-energy nexus
Heechul Choi, Moon Son, Jiyeol Bae, Hyeongyoo Choi, Gwangju Institute of Science and Technology (GIST), Republic of Korea

Chapter 4
Removal of Emerging Contaminants from Water and Wastewater using Nanofiltration Technology
Yang Hu, University of Waterloo, Canada
Yue Peng, Georgia Institute of Technology, USA
Wen Liu, Dongye Zhao, Auburn University, USA
Jie Fu, Georgia Institution of Technology, USA

Chapter 5
Long-term Performance Evaluation of Groundwater Chlorinated Solvents Remediation Using Nanoscale Emulsified Zerovalent Iron at a Superfund Site
Chunming Su, United States Environmental Protection Agency (USA EPA), USA
Robert W. Puls, United States Environmental Protection Agency, USA (retired)
Thomas A. Krug, Geosyntec Consultants Inc., Canada
Mark T. Walling, Geosyntec Consultants Inc., Canada
Suzanne K. O’Hara, Geosyntec Consultants Inc., Canada
Jacqueline W. Quinn, NASA Kennedy Space Center, USA
Nancy E. Ruiz, US Navy, USA

Chapter 6
In-situ Oxidative Degradation of Emerging Contaminants in Soil and Groundwater Using a New Class of Stabilized MnO Nanoparticles
Bing Han, Wen Liu, Dongye Zhao Auburn University, USA

Chapter 7
Light Sensitized Disinfection with Fullerene
Kyle Moor, Yale University, USA; Samuel Snow, Michigan State University, USA;
Jaehong Kim, Yale University, USA

Chapter 8
Nanotechnology Applications for Sustainable Crop Production
Gaurav Mishra, Shailsh Pandey, Antara Dutta, Krishna Giri, Rain Forest Research Institute, India

Chapter 9
Developments in Antibacterial Disinfection Techniques: Applications of Nanotechnology
Nicolas Augustus Rongione, Scott Alan Floerke, Emrah Celik, University of Miami, USA

Chapter 10
Assessment of Advanced Biological Solid Waste Treatment Technologies for Sustainability
Duygu Yasar, Nurcin Celik, University of Miami, USA

Chapter 11
Hybrid Nanostructures: Synthesis and Physicochemical Characterizations of Plasmonic Nanocomposites
Ahmed Nabile Emam, Ceramics & Building Materials Department, National Research Centre, Egypt
Ahmed Sadek Mansour, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
Emad Girgis, Solid State Physics Department, National Research Centre, Egypt
Mona Bakr Mohamed, National Institute of Laser Enhanced Sciences, Cairo University, Egypt

Chapter 12
Hybrid Plasmonic Nanostructures: Environmental Impact and Applications
Ahmed Nabile Emam, Ceramics & Building Materials Department, National Research Centre, Egypt
Ahmed Sadek Mansour, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
Emad Girgis, Solid State Physics Department, National Research Centre, Egypt
Mona Bakr Mohamed, National Institute of Laser Enhanced Sciences, Cairo University, Egypt

Chapter 13
Ecotoxicity and toxicity of nanomaterials with potential for wastewater treatment applications
Verónica Inés Jesus Oliveira Nogueira, Faculty of Science, University of Porto, Portugal
Ana Gavina, Faculty of Science, University of Porto, Portugal
Sinne Bouguerra, 3E, Engineering School of SFA, Portugal
Tatiana Andreani, Faculty of Science, University of Porto & CITAB-University of Trás-os-Montes and Alto Douro, Portugal
Isabel Lopes, University of Aveiro & CESAM, Portugal
Teresa Rocha-Santos, University of Aveiro & CESAM, Portugal
Ruth Pereira, Faculty of Science, University of Porto, Portugal

Chapter 14
Ecotoxicity effects of nanomaterials on aquatic organisms: Nanotoxicology of materials on aquatic organisms
Edith Inés Yslas, Universidad Nacional de Río Cuarto, Argentina
César A Barbero, Universidad Nacional de Río Cuarto, Argentina

Chapter 15
Copper and Copper Nanoparticles Induced Hematological Changes in a Freshwater Fish Labeo Rohita. A Comparative Study: Copper and Copper Nanoparticle Toxicity to Fish
Kaliappan Krishnapriya, Mathan Ramesh, Bharathiar University, India

Chapter 16
Control of Perishable Goods in Cold Logistic Chains by Biosensors
David Bogataj, Universidad Politécnica de Cartagena, ES, Spain
Damjana Drobnik, University of Ljubljana, Slovenia

Chapter 17
Understanding Toxicity of Nanomaterials in biological systems
Irshad Ahmad Wani, Tokeer Ahmad, Jamia Millia Islamia, New Delhi, India

Compilation of References

About the Contributors

Index
Sung Hee Joo, Assistant Professor of Civil, Architectural and Environmental Engineering at the University of Miami is the Director of the Environmental Nanotechnology Laboratory. Dr. Joo received PhD in environmental engineering at the University of New South Wales. Following her time in Australia, she conducted research on the formation and pathways of nitrogenous disinfection by-products during chlorine and chloramine disinfection at Yale University. She and her colleagues expanded research involving the development and applications of stabilized bimetallic nanomaterials for in situ remediation of chlorinated hydrocarbons. Dr. Joo has expertise in the field of advanced treatment technologies for emerging environmental contaminants, environmental nanotechnology, chemical nanoscience, the innovative processes of water/wastewater treatment, the application of membrane technology in wastewater, and the fate & transport of contaminants in the environment. She is a recipient of the Provost Research Award, USEPA's STAA, NRC, and YCC award of ACS.