Engineering Reliable Service Oriented Architecture: Managing Complexity and Service Level Agreements

Nikola Milanovic (Model Labs - Berlin, Germany)

Dynamic, trustworthy and reliable service delivery in Service Oriented Architectures (SOA) is one of the main pre-conditions for successful and sustainable business operations. Service and business process reliability is, therefore, of paramount importance and cannot be compromised.

Engineering Reliable Service Oriented Architecture: Managing Complexity and Service Level Agreements presents a guide to engineering reliable SOA systems and enhances current understanding of service reliability. It is an essential reference for both practitioners and researchers wishing to explore state-of-the-art results from the field of reliable SOA application engineering.

Topics Covered:
- Adding semantics to QoS requirements
- Aggregating functional and non-functional properties to identify service compositions
- Adapting hierarchical Web service compositions
- Applying concept reuse for adaptive service composition
- Methodology and framework for assessing service and business process availability
- Non-functional properties in embedded operating systems
- Quality aspects in service oriented architecture through service level agreements
- Quality of service monitoring, diagnosis, and adaptation
- Specification of non-functional requirements
- Supporting service level agreement with service discovery

Print: US $180.00 | Perpetual: US $255.00 | Print + Perpetual: US $360.00

Market: This premier publication is essential for all academic and research library reference collections. It is a crucial tool for academicians, researchers, and practitioners and is ideal for classroom use.

Nikola Milanovic is co-founder and CEO of Model Labs. The Berlin-based company offers innovative model-based software product family for system integration and service availability assessment. Previously, he was senior researcher at Berlin University of Technology (TU Berlin) and Hasso-Plattner Institute (HPI) in Potsdam. Milanovic received his PhD in computer science from the Humboldt University in Berlin.

Publishing Academic Excellence at the Pace of Technology Since 1988
Section 1: Service Level Agreements

Chapter 1
Design of Quality Aspects in Service Oriented Architecture through Service Level Agreements
Massarelli Marco (Università degli Studi di Milano-Bicocca, Italy)
Raihani Claudia (Università degli Studi di Milano-Bicocca, Italy)
Cammareri Daniele (Università degli Studi di Milano-Bicocca, Italy)
Perino Nicolò (University of Lugano, Switzerland)

Chapter 2
Flexible and Dynamic SLA Management in Service Oriented Architectures
Di Modica Giuseppe (Università di Catania, Italy)
Tomarchio Orazio (Università di Catania, Italy)

Chapter 3
Quality of Service Monitoring, Diagnosis, and Adaptation for Service Level Management
Wang Guaijun (Boeing Research & Technology, USA)
Wang Changzhong (Boeing Research & Technology, USA)
Santiago Rodolfo A. (Boeing Research & Technology, USA)
Jin Jinguojun (Boeing Research & Technology, USA)
Shaw David (Boeing Research & Technology, USA)

Chapter 4
Supporting Service Level Agreement with Service Discovery
Zisman Andrea (City University, UK)

Chapter 5
Configuration of Non-Functional Properties in Embedded Operating Systems:
Hofer Wanja (Friedrich–Alexander University Erlangen–Nuremberg, Germany)
Sincero Julio (Friedrich–Alexander University Erlangen–Nuremberg, Germany)
Schröder-Peislach Wolfgang (Friedrich–Alexander University Erlangen–Nuremberg, Germany)
Lohmann Daniel (Friedrich–Alexander University Erlangen–Nuremberg, Germany)

Chapter 6
Adding Semantics to QoS Requirements
Giallonardo Ester (University of Sannio, Italy)
Zimeo Eugenio (University of Sannio, Italy)

Section 2: Service Composition

Chapter 7
Selective Querying for Adapting Hierarchical Web Service Compositions
Harney John (University of Georgia, USA)
Doslu Prashant (University of Georgia, USA)

Chapter 8
Aggregating Functional and Non-Functional Properties to Identify Service Compositions
Blanco Eduardo (Universidad Simón Bolívar, Venezuela)
Cardinale Yudith (Universidad Simón Bolívar, Venezuela)
Vidal Marta–Estefanía (Universidad Simón Bolívar, Venezuela)

Section 3: Reliability and Fault Tolerance

Chapter 9
Web Services Composition Problem:
Sheikh Fahima (Université de Toulouse, France)

Chapter 10
Specification of Non-functional Requirements and Their Trade-offs in Service Contracts in the NGOSS Framework
Xiaoping (Frank) Liu (Missouri University of Science and Technology, USA)
Georgalas Nektarios (British Telecom GCTO, UK)

Chapter 11
Applying Concept Races for Adaptive Service Composition
Ezenwoye Onyeck (South Dakota State University, USA)
Sadjadi S. Masoud (Florida International University, USA)

Chapter 12
Prediction of Non-Functional Properties of Service-Based Systems:
Taweel Adel (King’s College London, UK)
Tyson Gareth (King’s College London, UK)

Chapter 13
Model-Based Methodology and Framework for Assessing Service and Business Process Availability
Milanovic Nikola (Model Labs - Berlin, Germany)
Milic Bratislav (Humboldt University, Germany)

Chapter 14
Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks
Sadi Muhammad Sheikh (Curtin University of Technology, Australia)
Myers D. G. (Curtin University of Technology, Australia)
Sanchez Cesar Ortega (Curtin University of Technology, Australia)

Chapter 15
Design and Deployment of Service Oriented Applications with Non-Functional Requirements
Gönczi László (Budapest University of Technology and Economics, Hungary)
Varro Dániel (Budapest University of Technology and Economics, Hungary)

Chapter 16
Reliability Assessment of Service-Oriented Architectures Using Fault Injection
Kloker Nik (Durham University, UK)
Munro Malcolm (Durham University, UK)

Order Your Copy Today!

Name: __
Organization: __________________________________
Address: ___
City, State, Zip: __________________________________
Country: ___
Tel: __
Fax: __
E-mail: __

☐ Enclosed is check payable to IGI Global in US Dollars, drawn on a US-based bank

☐ Credit Card ☐ Mastercard ☐ Visa ☐ Am. Express

3 or 4 Digit Security Code: __________________________
Name on Card: ___________________________________
Account #: _______________________________________
Expiration Date: _________________________________