
DOI: 10.4018/JOEUC.20210301.oa2

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

This article, published as an Open Access article on December 18, 2020 in the gold Open Access journal, Journal of Organizational and
End User Computing (converted to gold Open Access January 1, 2021), is distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided

the author of the original work and original publication source are properly credited.

17

Placement for Intercommunicating
Virtual Machines in Autoscaling
Cloud Infrastructure:
Autoscaling and Intercommunication
Aware Task Placement
Sridharan R., National Institute of Technology, Tiruchirappalli, India

Domnic S., National Institute of Technology, Tiruchirappalli, India

ABSTRACT

Due to pay-as-you-go style adopted by cloud datacenters (DC), modern day applications having
intercommunicating tasks depend on DC for their computing power. Due to unpredictability of rate
at which data arrives for immediate processing, application performance depends on autoscaling
service of DC. Normal VM placement schemes place these tasks arbitrarily onto different physical
machines (PM) leading to unwanted network traffic resulting in poor application performance and
increases the DC operating cost. This paper formulates autoscaling and intercommunication aware task
placements (AIATP) as an optimization problem, with additional constraints and proposes solution,
which uses the placement knowledge of prior tasks of individual applications. When compared
with well-known algorithms, CloudsimPlus-based simulation demonstrates that AIATP reduces the
resource fragmentation (30%) and increases the resource utilization (18%) leading to minimal number
of active PMs. AIATP places 90% tasks of an application together and thus reduces the number of
VM migration (39%) while balancing the PMs.

KEywORdS
Autoscaling, Cloud Computing, Communication Latency, Elasticity, Intercommunication, Network Latency,
Tasks Migration, VM Placement

INTROdUCTION

The rate at which data is generated by modern day applications is growing exponentially and is
unpredictable with respect to time. Amount of information contained in the data are also disruptive
for predictive data processing and analytics functionality. This data needs to be analyzed timely for
building business intelligence leading to better decisions. Hence, these applications depend heavily on
cloud computing paradigm. Using pay-per-use mode, cloud computing provides autoscaling services
to manage the sporadic resource requirement of modern day applications. As industries desire reduced
time to market for their applications, they adopt to cloud. Cloud operates via DC (datacenters), has
huge computing and storage resources, resulting in heavy electric power consumption. This leads to
higher operational cost for the CSPs (cloud service provider) and eventually the same will be passed
to the customers. Hence, the current focus of researchers is to identify efficient DC management

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

18

leading to reduced power consumption while delivering high quality service to the customers. This
presents several research challenges including resource management (Manvi, & Shyam, 2014). These
challenges need to be addressed after considering multiple parameters related to application types,
cloud services and networks of DC.

Application types could be multi-tier web applications, big data processing applications, machine
learning and multimedia applications, and high-performance applications. Applications such as video
surveillance, real time gaming, real time streaming and augmented reality have intercommunication
tasks1 which are too sensitive towards latency and also need more computational power. For example,
VMs hosting database tasks and hosting application tasks need intercommunication in three-tier web
applications. Similarly, VMs that hosts object tracker task in a video surveillance system that uses
multiple cameras covering multiple areas, need inter task communication. As these applications are
sporadic resource requester by nature, they depend heavily on elastic capability. Typically, these
applications having group of jobs (could be long-duration jobs needing autoscaling), execute their
intercommunicating or non-intercommunicating tasks using VMs (Virtual Machines instance) in a
DC. Autoscaling service operates on an adjustable capacity (minimum and maximum number of
VM), (Boucher Jr, et al, 2018; Barclay, 2016) within which the tasks need to be executed. Without
violating this capacity range, addition or deletion of VM instances shall be carried out, upon meeting

the resource threshold value specified by the user.
Virtual Machine Placement (VMP) (Lopez-Pires & Baran, 2015) is the process of selecting

suitable Physical Machine (PM) to place the requested VM. VMP taking into account the auto-
scalability of the applications along with intercommunication of theirs tasks is a challenging cloud
problem.

Consider an example of three application requests that are currently (at time T0) executing
in a DC. Let ncR1vm1 and ncR3vm1 be the VMs of first and third application respectively, which
are non-intercommunication type. Let the second application have two inter-communicating VMs
(cR2vm1 and cR2vm2) that needs autoscaling. Assume that at time T1, fourth and fifth requests arrive
to the DC. While fourth is a fresh non-intercommunicating type request (ncR4vm1), the fifth request
(cR2vm3) is an additional VM of the second request that needs inter communication with cR2vm1 and
cR2vm2. Further, let these tasks follow the communication pattern represented by arrows, as shown
in Figure 1(a). Assuming that we have two PMs to place these tasks, using First Come First Serve
(FCFS) VMP algorithm along with load balancing, placements of VMs at T0 resembles to that of
Figure 1(b). Placement of tasks at T1 is shown Figure 1(c). If all the tasks are placed onto single PM
itself, the other PM could be switched off to reduce the overall power consumption. Else placing all
the intercommunicating tasks (cR2vm1, cR2vm2 and cR2vm3) on to the same PM or on to a network

Figure 1. Sample VM and its placement using FCFS

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

19

neighborhood machines will reduce the power consumption used for communication, as network
latency among these tasks is minimal.

In a DC, neighborhood is defined as shortest path used for inter-server communication adhering
to the pre-defined policies and topologies of the DC. Typically, servers are wired together to form a
cluster that are inter-connected using routers, switches and aggregators to form a DC. Governed by
network polices related to performance and security, an application over DC network has complex
communication patterns. Network operators ensure these policies by deploying “middleboxes” like
firewalls, load balancers, IPS (intrusion detection and prevention systems), etc. The policies demand
that the traffic pass through a sequence of specified middleboxes.

Consider a flat-tree based DC network architecture as shown in Figure 2 in which, server S5
currently (time T0) executes two VMs (V1 and V2) of an autoscaling application. Assume that at time
T1 third VM (V3) of the same application needing intercommunication with (V1 and V2) needs to be
placed. Also, assume that S5 does not have enough resources to hold V3. Based on the communication
path, S6 is the best suitable PM to place the V3. If it is not possible, next best possibilities are: S3 or (/)
S4, S1/S2 and S7/S8 in that order. It is to be noted that even though the communication from S5 to S1/S2
and S7/S8 needs five network-hops, it is preferred to have S1/S2 , as communication to S7/S8 mandatorily
needs to go through the IPS2 and hence wastes the network resources.

Motivation
From the above explained two scenarios, we can conclude that intercommunicating tasks are bound
to give better performance, when they are placed together on to the same PM (Meng et al., 2010) or
network neighborhood PM (Cui et al., 2017). This also reduces the power consumption of DC due

Figure 2. DC Architecture with policy aware placement

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

20

to reduced network latency and probable early VM migrations. Hence, after formulating AIATP
(Autoscaling and Intercommunication Aware Tasks Placement) problem, authors propose an efficient
AIATP algorithm to improve the resource utilization of DC. Novelty of this algorithm is, using the
prior-tasks-placement knowledge of a request (application) for placement of its additional tasks
adhering to co-allocation and fixed PM constraints. In summary, contributions of this paper are as
follows:

• A mathematical modeling of Autoscaling aware VMP for intercommunicating tasks (AIATP)
of cloud applications is developed. This model considers applications, having group of tasks or
single task during their life-time for placement instead of individual tasks, a widely followed
practice is presented.

• A comprehensive task placement algorithm is proposed, which uses prior-task-placement
knowledge of autoscaling applications for the placements of their additional tasks. This algorithm
produces VM-to-PM mapping with best possible network efficiency and thereby increases the
application performance.

• Results of extensive simulation are presented to show the effectiveness of the proposed algorithm
via reduced VM migrations and resource fragmentation, improved resource utilization and
maximum co-placed tasks for autoscaling requests.

Rest of this paper is organized as follows. Related Works reviews the available literature related
to the problem. Next problem formulation is described and proposed modeling is illustrated using
an example. Subsequently, the proposed algorithmic solution along with its complexity is discussed.
After presenting the implementation details, the paper proceeds to evaluate the AITAP with other
algorithms before presenting the conclusion.

RELATEd wORKS

As cloud computing is built on the concept of resource sharing through internet, there exists lot of
challenges related to various cyber security (Zhaolong et al., 2017). Further using cloud as base
new technologies like IoT, fog/edge computing have emerged and hence secured integration of these
technologies with cloud is paramount (Stergiou et al., 2018). However, authors restrict the focus of
the present work only to placement algorithms.

(Rahman & Graham 2017) have proposed static initial VM placement where, VMs are co-placed
based on their compatibility in terms of their varying resource requirements. In this work, PMs and
VMs are differentiated based on their past usage as resource critical and non-critical. But, they have
not considered the autoscaling requirements of an application hosted by these VMs.

(Cui et al., 2017) have brought out the importance of policy and network awareness before
considering VM migrations. They have demonstrated an efficient VM management scheme which
reduces the communication cost while considering PMs to migrate the VMs.

Further, some contributions have explored two-stage approach as well for VMP problem.
(Beloglazove et al., 2012) proposed two stages for the VMP: (i) initial placement of VMs and (ii)
optimizing the current placement. In this, using CPU utilization of the VMs, a Modified Best Fit
Decreasing (MBFD) algorithm was used for initial placement and the second phase was triggered
whenever PMs breach the CPU thresh-hold value. Without considering autoscaling, (Zheng et al.,
2016) have subdivided the VMP as two sub-problems. A Best Fit (BF) algorithm, used for incremental
placements acted as first step followed by another step in which, periodical trigger of VM consolidation
was suggested.

Another two phases online VMP was proposed by (Shi et al., 2015) where PMs and VM requests
are represented as vectors. During the first phase, based on cosine similarity of the vectors, PM types

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

21

were assigned to VM requests and based on resource requests, VMs were categorized for each PM
type. Using utilization thresholds of PMs, reconfiguration of VMs was triggered in the second phase.
But, authors have not considered the elasticity in their work. Another two-phase approached for VMP
proposed by (López-Pires et al., 2018) has considered complex IaaS environment including elasticity
but did not consider the application performance while placing the additional VM of autoscaling
requests.

While (Yokoyama et al., 2017) have used affinity awareness among the VMs to create the cluster
node and do the placement, (Chen, et al., 2016) have simply used affinity awareness among the VMs
for their placements. In (Chen, et al., 2016), it was demonstrated that the application running on the
VMs that are placed using this placement scheme improves the performance rather than placing them
individually without knowing their affinity. (Meng et al., 2013; Meng et al., 2010; Cui et al., 2017)
have demonstrated the importance of network awareness during VM placement for an efficient DC
management. (Al-Dulaimy et al., 2018) present a distributed approach for VM consolidation and
use Multiple Choice Knapsack for VMP. (Li et al., 2013) discuss the elasticity aware VMP under
the limitation of both PM capacities and bandwidth capacities to present a hierarchical VMP, where
network-switch capacity from bottom to top is accumulated and used as a parameter for VMP.

Detailed survey on issues and challenges involved in cloud resource scheduling has been presented
(Sukhpal & Inderveer 2016). Further, (Sukhpal & Buyya 2018) proposed a scheduling frame-work for
resource provisioning by autonomic offering in heterogeneous cloud. However, these works have not
addressed the situations needing inter-communication among the various tasks of single application.

To the best of author’s knowledge, this work is the first attempt that can optimize the placements
for the tasks of an application that needs autoscaling and intercommunication, using the knowledge
of prior-placement of tasks from these applications.

PROBLEM STATEMENT ANd PROPOSEd MOdEL

This section explains the problem addressed through this work and its mathematical modelling
followed by an illustrative scenario.

Problem Statement
Applications that want to use cloud resources can be broadly classified as those needing autoscaling
service and those not needing autoscaling. Further these applications can be differentiated as those
having intercommunicating tasks and non-intercommunicating tasks. As implemented by popular
CSPs (Boucher, et al, 2018; Barclay, 2016) applications aspiring to have autoscaling service need
to specify a minimum (minVM) and maximum (maxVM) number of instances to run and add or
remove VMs automatically based on a set of rules. In effect, the number of VMs dedicated to these
applications during theirs life-time shall be between minVM and maxVM.

VM requests emanated from the applications are queued for predefined time period in a batch
and are processed together in a DC. These requests can be classified into three types, namely (a)
new VM(s) requests, (b) migrating VMs requests and (c) incremental VM requests of autoscaling
applications. Efficiently placed minVMs and their incremental VMs can give various benefits to
both user and CSP. Firstly, Incremental VMP, when solved as a fixed placement problem is bound
to increase the application performance as network latency is avoided. Secondly, placing minVMs
together reduces the potential migrations, as these requests are normally long duration jobs during
server consolidation. This reduced migration and network latency lead to minimal power consumption
in DC. Thirdly, as individual PMs are proposed to be balanced with VMs serving both autoscaling
and non-autoscaling requests, SLA violations for an autoscaling requests are bound to be minimal.
This is because forced migration if any, to accommodate additional VMs for autoscaling requests,
will start from non-autoscaling VMs.

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

22

Encouraged by above mentioned benefits, a model to the problem of identifying efficient
placements for intercommunicating tasks of an autoscaling application is proposed.

Proposed Model
This model classifies the request into three types: autoscaling requests having intercommunicating
tasks (

as
c) non-autoscaling requests but having intercommunication ()c and all other requests (

R �) or modeling.
To formalize the problem, we make the following assumptions:

• Let K τ() tasks belonging to each request of type
as
c τ() . c τ() and be pooled in the batch

to be placed at the time slot τ 1≤ ≤τ T ;
• Let p p p p

n
= …{ }1 2

, , and v v v v
m

= …{ , , }
1 2

 be the identifier PM and VMs constrained with
D-dimensional resource vectors R (number of CPUs, memory size, storage space, bandwidth
etc.);

• Let r k
k
, .∈ …{ }1 α be a positive integer that uniquely identifies the requests defined by a four

tuple:

r u VM minVM maxVM
type

= { }, ,,

where:

minVM maxVM&

are number of VMs:

VM micro small medium large xlarge
type
= { }, , , ,

u
as
c c= { } , ,

Note that when u
as
c∉ ⇒�R maxVM = 0 .

Let S T() be the requests sequence at the time slot τ 1≤ ≤τ T . Then, from the assumptions
we have:

S T r r K v i minVM
k

k k i() = () = () = ∑ ≤ ≤()
=
∑

1

1
α

τ τ τ(), ,

Let function Φ indicate the placement schema Φ r p
k() = if task of r

k
th request is placed on

the p th PM. Then the objective is, given a request sequence S T T() ≤ ≤, ,1 τ and PMs p p n,1≤ ≤
with capacity find a placement function Φ :

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

23

minimize n
T

τ

τ
=
∑ ()

1

��

 (1)

subject to the constraints presented below.

• Resource Constraints: Ant any given point of time across different time slot, combined resource
requirements of VMs in a PM cannot exceed the resource capacity of PM. During the placement
of K τ() VMs belonging to r

k
τ() request in the τ th time slot, the PMs identified to host these

VMs, are subject to primary resource constraints:

∀ ≤ ≤ ≤ ≤1 1p n d D,

r v

r

vp v
d

k

k

X R
α τ

∑∑
=

()

≤
1

* (2)

where R
v
d 1≤ ≤d D is the resource demand of vth VM and:

X
if v VM is placed onto the p PM

otherwisevp

th th

=
1

0

,

,

• Placement Constraints: Each VM of user request r has to be placed to run on a single PM:

∀ ≤ ≤1 p n,
r v

r

vp

k

k

X
= =

()

∑∑ =
1 1

1
α τ

 (3)

Adjusting resource capacity of individual PM and VM in each dimension measured on different
scales to a notionally common scale is called normalization. Each item has resource vector
R R R R
i i i i

d= …{ , , . }1 2 and each dimension l l d, ,∈ …

1 denotes resource (CPU, memory etc.) demand

size R
i
l which is normalized 0 1… and capacity of each PM is also normalized to 1, then we have:

X
vp
τ() ∈ { }0 1, and n τ() ∈ { }0 1, (4)

• Co-Allocation Constraint: In any request of type
as
c and c , let tasks v

1
τ() and v

2
τ() have

co-location requirement and are required to be co-located onto same PM p n∈ …

1 , then we

can combine tasks v
1
τ() and v

2
τ() to one group and form a new task v

new
τ() . For each resource

dimension d , the size of the group task is denoted by sum of tasks v
1
τ() and v

2
τ() :

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

24

R R R
v
d

v

d

v

d

new τ τ τ()
= +() ()1 2

 (5)

Hence, we add the following constraint to AIATP model:

∀ ∈ …

p n1 , ∀ ∈ …

{ } ∈ () ∈ { }v v minVM r r

k k as
c c

1 2
1, & ,τ

X X
V p V p1 2
= (6)

• Balanced PM Constraint: Individual PMs shall contain task of requests belonging to all types
namely,

as
c c, and . Note that this constraint is for initial task placements only and not for

additional tasks placements:

∀ ≤ ≤1 p n,
a

a
b

b
c

b
r r r

= = =
∑ ∑ ∑()< ()+ ()

1 1 1

α α α

τ τ τ
~

 (7)

where, r
a as

c∈ , r
b

c∈ and r
c
∈ . By adhering to this constraint, migration-related SLA violations

during server consolidation can be avoided for
as
c requests, as autoscaling requests are expect to

utilize the resource for longer duration.

• Comment: This constraint might give the impression of forced resource fragmentation and this
is true, when small numbers of VMs are considered for placements. However, in real world DCs,
the number of VMs considered for placement will be huge and as number of VMs increases, the
resource fragmentation tends to reduce which is demonstrated through our simulation.

• Fixed PM Constraint: Let
ij

, where i j m, 1…{ } is a requests-relation matrix that represents
relation among VMs of individual requests during theirs life-time. Each element of this matrix
is filled with r

k
 the request identifier, to which the current VM belongs. Let r

k
' ′()τ denote the

additional VM of an autoscaling request r
k
τ() . Then, for each additional VM of an autoscaling

request, we add the following fixed PM constraint:

∀ ∈ ≤ ≤r k
k as

c , ,1 α x r r
vp k k
= () =′' τ (8)

• Comment: On availability of resources, this constraint helps us in placing additional VM request
of autoscaling user at time ′τ on to the same PM where the earlier VMs of this request at time
τ are placed. Otherwise, the placement is achieved by migrating the non-autoscaling requests
VM(s) from the said PM or from the nearest network neighborhood machine so that the
intercommunication cost of VMs belonging to this request over the period of time will be minimal.

Hence, the objective (1) with constraints of (2), (3), (6) and (7) needs to be achieved for an
effective initial task placement of an intercommunication needing request while the objective (1)
with constraints of (2), (3) and (8) needs to be satisfied during the additional VM requests of an
autoscaling request.

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

25

Claim: AIATP is NP-Complete.
Proof: As per constraint (6), resource demand vectors of all the VMs specified by minVM of request

having intercommunicating tasks, are combined to form a new VM having higher resource demand
vector. Characteristics of VM, an equivalent to an item in a bin-packing problem, are not altered
by adhering to this constraint. Similarly, constraint (7) which ensures that the individual PMs are
balanced does not change the characteristics of bin while placing the item. As stated in (4), we
can equate the normalized the AIATP problem to that of normalized VMP problem by dividing
VM sizes with the corresponding resource capacities of PMs. Hence, similar to general VMP
problem, AIATP is also NP-Complete.

Since minimization problem of AIATP is NP-Complete, we cannot obtain the optimal placement
solutions in polynomial time unless P=NP (Heidelberg, 2006). Hence, we consider an algorithmic
approach to get an approximate solution in this paper.

Illustrative Scenario
For an illustrative purpose, initially at time t0 consider 8 that requests are pooled in the batch and 5
PMs are available to place the VMs of these requests. Among these 5 PMs, assume that first 2 follow
different network policy than that of remaining 3 PMs. Also, assume that requests 1, 3, 4, 6, are of
type non-autoscaling and requests 2, 5, 7, 8 are of type as having 3, 2, 2, and 3 respectively as the
minVM. For the sake of simplicity in this illustration, we are not considering the resource dimensions
of PMs and VMs.

After the completion of initial VMP using first fit algorithm, VM’s request relation matrix will
be formed as

t0
 shown in Figure 3. In this matrix, the columns correspond to number of PMs and

the individual elements represent the VM having unique request identifier as its value. Repetition of
same value for the elements indicates that these elements belong to same request, while number of
such repetition represents the value of minVM in that request. Consider the placement scheme for the
request 8: this request has 3 minVMs and they are placed together in PM 4. Similarly, the placement
scheme for other VMs can also be identified. Note that 0 value elements represent the free space
available in the PM. Even though request 8 can be placed on to PM 3, owing to constraint (7) it is
actually placed on PM 4.

Let us look at the changes in the request relation matrix for various time intervals. It is to be
noted that in the subsequent time intervals there can be two types of requests: addition or deletion of
VMs by the already running autoscaling requests; new autoscaling and other requests types can be
present. Assume that request 2 asks for an additional VM, request 8 asks to delete a VM and new
autoscaling request 9 with minVM as 1 and non-autoscaling request 10 are pooled in at time t1.
Assuming that, all other VMs which are initially placed are still in running state, request 1 is migrated
from PM1 to PM2 to accommodate the additional VM of request 2 as shown in

t1
 of Figure 3.

Further, when additional request emerged from request 2 at time t2, together with a non-autoscaling
request 12 and autoscaling request 11 having 2 minVM the matrix looks like

t2
 of Figure 3. Similarly,

Figure 3. Transistion of Autoscaling request-relation matrix for different timeline

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

26

assume that at time t3 also, the request 2 asks for an additional VM. Since PM1 does not have enough
capacity to place this additional VM, it is to be placed onto a network neighborhood machine, which
is PM 2 in our case, as this is an additional VM of autoscaling request 1. Hence, request 4 is moved
to PM 3. The transformations at time t3 are depicted in

t3
 of Figure 3.

AUTOSCALING ANd INTERCOMMUNICATION
AwARE TASK PLACEMENT ALGORITHM

In this section, we present a VMP scheme guided by AIATP problem modelling based on request
types (

as
c , c , and rather than VMtype for optimal operations of DC. This scheme recognizes

autoscaling and tasks-intercommunication of the requests for placements and network policy for
migration. Initial placement focuses on placing the VMs of individual requests efficiently, so that
future migrations and network overheads are minimal. This also ensures that the overheads in-terms
of identifying suitable VMs and PMs that are candidates for migrations are reduced. Subsequently,
additional VMs of an autoscaling requests are placed in such a way that the inter-communication
among the tasks of this request are confined to the individual PM or network neighborhood PMs
resulting in better application performance.

To develop such an algorithm, we make some simplifying assumptions as follows:

• DC has enough capacity to serve all the requests including additional VMs.
• In consistent with CSP, Amazon (Boucher Jr, et al, 2018; Barclay, 2016) users are expected to

specify the minVM and maxVM, which captures application’s autoscaling and intercommunication
requirements.

• Without loss of generality, we assume that minimizing cross-traffics and migrations of VMs
reduces the overall energy consumption of a DC and increases its operational efficiency.

In this work, initial VMP is achieved by adhering to constraints (2), (3), (6) and (7). Fixed
placement pattern that includes network neighborhood machines, is adopted for the additional
VM of an autoscaling requests. The total (original) capacity, current utilization of PM which is in
consideration for placement, and resource demand of VM are denoted by Ct, Cu and Cr respectively.
Note that all these parameters are defined in terms of resource vectors (number of CPUs, memory,
storage, bandwidth etc.).

AIATP algorithm organizes the tasks, after extracting their details from the individual request,
according to various constraints listed in problem modelling section. Subsequently these tasks are
sent to ALLOC sub-function along with candidate PM, which accomplishes the placements. Upon
non-availability of enough resources in the PM, ALLOC function initiates new PM and places the
VMs. The detailed description of the algorithm follows.

AIATP algorithm

Require: batch containing requests at time τ active PM number n
Result: VM placement /* refer section 3 for definition of symbols
*/
1. while batch != NULL do
2. Create requests identifier r K

k
τ τ() ← ()

3. end while
4. for each r

k
τ()

5. if r
k
τ() for deletion

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

27

6. process scale-down of VM

7. else if r
k
τ() for addition /* fixed PM rk' ′()()τ

constraint */
8. C

u
 = ALLOC (X r p

k n
, , ')

9. else if u
as
c∈ /* co-location constraint */

10. X minVM R VM
v

d
type

← ()()*
τ

11. add X to List1
12. else if u c∈
13. X minVM R VM

v

d
type

← ()()*
τ

14. add X to List2
15. else if u ∈
16. X ←

R VM
v

d
typeτ() ()

17. add X to List2
18. end for
19. sort on VM

type
: List1 in descending order

20. sort on VM
type

: List2 in ascending order
21. while List1 != NULL do
22. C

u
 = ALLOC (X u p

n
, ,)

23. remove X from List1
24. if C

u
 >= 1/2 * C

t
) /*balanced PM constraint */

25. for each X in List2
26. C

u
 =ALLOC(X, u p

n
,)

27. remove X from List2
28. if (C

u
 = C

t
) break;

29. end for
30. end while
31. for each X in List2
32. C

u
 = ALLOC(X, up

n
)

33. end for

Explanation of AIATP Algorithm

This algorithm does a comprehensive tasks placement by considering all types of tasks (
as
c c, and

) instead of concentrating only on autosacling requests that have intercommunicating tasks.
Individual requests, both from cloud service and users, are collected into a batch. Additional VM of
autoscaling requests emanating from cloud services, are also queued to the same batch. Each request
is defined by four-tuple as explained in problem formulation. However, if the request is emanated
from cloud service then, information indicating whether the request is to scale-up or scale-down the
VM, and a unique request identifier through which the four-tuples can be extracted, defines the
request.

At fixed time slot τ requests pooled in the batch are differentiated as fresh request and additional
request. After extracting VM details from VM

type
, each request are segregated as

as
c , c and

before storing them in two different lists namely List1 and List2 [lines 9- 17]. Note that, according
to co-allocation constraint of the proposed AIATP, the demand resource vectors of all the VMs, given
by minVM of new requests are combined to form a new VM and considered as single placement.
Hence, this process is completed before adding the VM details to List1 [line 10, 13]. If the request

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

28

is for scale-up or scale-down of VM from an existing autoscaling request, then PM details are extracted
from the request identifier and processed accordingly [lines 5-8]. Sorting of List1 from large to small
[line 19] and List2 from smaller to larger [line 20], ensures that individual PMs are filled with
combination of large sized VMs of

as
c request with that of small sized VM of c and requests.

This helps in accommodating the additional VMs of
as
c request in the future with minimum SLA

violations if any. We accomplish the adherence to balanced PM constraint [lines 21-29] by allocating
VMs of

as
c request till PM capacity reaches half of its capacity, then switch to List2 and start

allocating the VMs of c and users until the PM is fully used. Once the particular PM is full, the
control switches back to List1. Finally, leftover VMs of c and requests if any, are also allocated
[line 30-32] on to available PMs instead of considering them with the next batch. The actual allocation
of VMs on to PMs is done by ALLOC function, which is explained next.

Mapping of VMs to PMs (ALLOC)

Sub function ALLOC: Mapping of VMs to PMs
Input: X (VM to be placed), rk

, pn (candidate PM)
Output: C

u

1. extract u from r
k

2. C C C
a t u
← − and C X R

r
d= ⋅

3. if u
as
c∈ and X is an additional VM

4. if (C C
a r
>) map X onto p

n

5. else if (p X R C
n

d
r

� R′ ⋅ ∈ ≥)

6. migrate ′X from p
n
 using FirstFit

7. map X onto p
n

8. else map X onto n/w neighborhood machine by
repeating step 4-8
9. else if ()C C

a r
> map X onto p

n

10. else map X onto new PM
11. return C

u

For ALLOC function VM, request type and candidate PM are given as input. After calculating
available C

a
 and extracting resource demand vector C

r
 of current VM in consideration for placement,

[line 3] function proceeds to map the VM onto the candidate PM given as the input. If the request is
for an additional task of

as
c requests, on availability of enough resources greater than or equal to

Cr, it is directly mapped on to the PM [line 5]. Otherwise, suitable VM is migrated belonging to
or combination of VMs belonging to c , from that PM using First Fit algorithm and places the
additional VM on to that PM. [lines 6-8]. Upon unsuccessful placement, suitable PM from network
neighborhood is identified and executes steps 6-8 until successful placement happens. If the request
is new one (

as
c , c and), then on availability of enough resources, we directly map the VM onto

the give PM, failing which, new PM is initiated and mapping of VM is done[lines 10-11]. Finally,
the current utilization of the PM used for the latest placement process is returned to the AIATP
algorithm.

Cost Analysis of AIATP
Number of VM requests (N) in the batch will be a modest constant. For example, if scan interval of
a batch is 5 minutes and on an average 10 VM requests get queued up, then AIATP needs to scan
[lines 3-16] these 10 requests only and hence the cost is O(N). Cost of sorting the List1 and List2 is

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

29

O(N log N). Since List1 and List2 are of size O(N/2), the following loop[lines 19 - 28] will also
execute O(N) times, implying that Allocate, will also be called O(N) times. The inner loop having
break [line 27] will execute once sufficient VMs of c and are placed matching to that of VMs
from

as
c . As the number of VMs in a PM is bounded by a constant, the cost of inner loop [lines

24-27] is O(1). Last loop [line 29-31] that places the leftover VMs also has a cost of O(N). Let M be
the number of candidate PMs in sub function ALLOC, then packing the VMs onto PM, results in
maximum cost of O(M). Therefore total cost of AIATP is O(N log N) + O(M). Cost of the well-known
algorithm like FFI/ FFD and FCFS which are under consideration for this work are O(N log N) and
O(N2). Hence, cost of AIATP is asymptotic to FFI/FFD and also gives better application performance
along with reduced operation cost for DC.

IMPLEMENTATION

Efficiency of any VMP algorithm needs to be evaluated in a large-scale cloud platform. However, it is
difficult to conduct the repeatable VMP experiments in a real production cloud platform. Even though,
there exist few open source solution to build own cloud environment (Barkat et al, 2015), researchers
mostly uses simulation environments to evaluate their new algorithms. Hence, the proposed AIATP
algorithm is also evaluated using CloudSimPlus (Manoel, et al., 2017) simulator using randomly
generated VMs. The algorithms were implemented as an extension to SimpleVmAllocationPolicy,
which determines how VMs are assigned to the host and additional tasks are assigned using
HorizontalVmScalingSimple classes.

The proposed algorithm, written in Java, is tested on a Dell workstation with Intel Xeon 3.30Ghz
and 16Gb memory, having x64 architecture. The simulation is performed over a datacenter made
up of twenty homogeneous physical machines whose configuration is presented in Table 1. User
requests are constructed using random generated values for u, VMtype, minVM and maxVM. VM
types and their resource characteristics are adopted similar to Amazon-AWS autoscaling service, is
presented in Table 2.

For each experiment, we created three bunches of randomly generated requests in the ratio of
2:1:1 for time slot τ τ

1 2
, and τ

3
. Total resource demand of VM is approximately made equal to that

Table 1. Host configuration used for simulation

Core RAM VMM Storage MIPS

16 64 GB XEN 1 TB 100000

Table 2. VM characteristics adopted from Amazon

M i c r o S m a l l M e d i u m L a r g e X l a r g e

vCPU Memory(GB) 1
1

1
2

2
4

2
8

4
1 6

Table 3. Characteristics of requests in a batch

Total
Requests

Requests
Type:

�
as
c

Requests
Type :

�c

Requests
Type: �

New VM
Requests:

�
as
c

New VM
Requests:

�c

New VM
Requests:
�

Additional
VM Requests

Delete VM
Requests

40 9 11 20 22 32 40 8 4

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

30

of total resource capacity of n PMs. While the first bunch is made up of fresh requests, the second
and third bunch can also contain requests for scale-up or scale-down of resources from those of earlier
autoscaling requests in addition to the fresh requests. Representing workloads, tasks having 1000
byte is attached with each VM. Characteristics of requests in a single batch are presented in Table 3.
While delete request is relevant for batches used in τ

3
 onwards additional request is relevant for

batches used in time τ
2

 onwards, the remaining columns are valid for all batches. Values of new VM
requests for type

as
c and c are equal to the number of minVMs instance requested.

Running the simulator with a request batch as input for FFD, FFI, FCFS and AIATP algorithms
constitute single experiment for our study. To avoid transient anomalies, we run ten such experiments
with different set of request batches and collect the following metrics.

Resource Utilization
Figure 4 depicts the average resource utilization of all 20 PMs involved in each experiment in
percentage terms. When we calculate average host utilization over ten experiments each for the three
timeslots, AIATP outperforms other algorithms by using 18% more. Slope of the trend lines drawn
in dotted-lines also indicates that the resource utilization of other algorithm is reducing as compared
to AIATP when more requests are served.

Resource Fragmentation
As explained in the previous section, three groups of requests have been created for each experiment.
While the combined resource demand capacity of the first group is approximately equal to the combined
capacity of 10 PMs, the capacity of remaining two groups is equal to that of 5 PMs each. In order to
measure the efficacy of AIATP with other algorithms in our consideration, we normalize the number
of PMs utilized for placing each request groups to 10, 5, and 5 respectively. When we consider the
placements across the timeslots, fully non-utilized PM count increases with other algorithms whereas,
it is decreasing for AIATP by 30% as indicated by the trend lines of Figure 5. This indicates that the
fragmentation created as AIATP adheres to constraint (7), is reduced over the period of time. Reduced
fragmentation and increased utilization leads to minimal active PMs.

Autoscaling Request Placement

Next parameter in our consideration is success of placing VMs of �
as
c type request on to the same

PM. This is believed to improve or at least maintain the performance of an application executing
using these VMs (Chen, et al., 2016; Meng et al., 2013; Meng et al., 2010; Cui et al., 2017) as inter-
communication among them is minimal. It is to be noted that, from time τ

2
 onwards the autoscaling

requests can be an addition/deletion of VM for an existing request or for a new one. The same is

Figure 4. Average PM Utilization during each experiments

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

31

portrayed through different shades for each experiment in Figure 6. The actual number of requests
placed during these timeslots is also shown (note that the y-axis is defined by the legend on the right).
Trend lines of this picture display that AIATP outperforms, by placing all the request onto the same
PM during the timeslot τ

1
 and τ

2
. However, in τ

3
 understandably, it places only 90%, because of

the combined resource demand by some individual requests have exceeded the capacity of individual
PM and hence, got placed on the network neighbourhood machines. Obviously, this led us to analyse
the migration needs of algorithms that are in our consideration.

Potential Migration Needed

Potential number of migrations needed to place all the VMs of
as
c and �c requests on to the same

PM across τ τ
1 2
, and τ

3
 for all the algorithms is calculated for our next experiment. It is to be noted

that this metric is applicable to AIATP from τ
2

 onwards only. Figure 7 indicates along y-axis, the
number of VM migrations needed for adherence of constraint (6), when using FFD, FFI anf FCFS.
Evidently, this count is zero for AIATP at time τ

1
 and slowly increases over �τ

2
 and τ

3
 due to forced

migration of VMs to accommodate additional VMs. Number of migrations is directly proportional
to the number of autoscaling requests, having minVMs = 1for other algorithms. For AIATP, number
of migrations is directly proportional to that of additional VMs requested. So the cost of VM migration
and the performance of application running in these VMs are directly proportional in case of AIATP.

Figure 5. Resource Fragmentation across time slot

Figure 6. Placement of Autoscaling requests having intercommunication Tasks on same PM

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

32

Hence, optimal number of minVMs together with reduced number of additional requests will yield
better performance of AIATP.

Balanced PMs
Final evaluation parameter is to identify how well-balanced are the individual PMs. As per the
constraint put forth in (7), individual PMs of datacenter needs to be blanced in-terms of hosting VMs
of autoscaling requests needing intercommunication together with VMs of other type of requests.
This ensures that, if enough resources are not avilable to host the additional VM of

as
c , in a particular

PM, then migration of VMs belonging to R� and c in that order is affected to accommodate the
additional VM.

First, resource utilization percentage of active PMs for hosting VMs of
as
c in each experiment

is calculated. Obviously, the remaining resources, after accounting for fragmentation if any, are
utilized for hosting VMs of and c . Subsequently, average standard deviation of placement
variance from 50% for all the active PMs in an experiment is calculated. Ten such experiments are
conducted, in order to conclude the findings,. The same is presented in Figure. 8 for timeslots τ τ

1 2
,

and τ
3
 respectively. When considering placements across timeslots, as expected standard deviation

increases for AIATP due to additional requests getting placed onto same PM. Standard deviation of
AIATP is still better and predictable than those of FFD, FFI and FCFS which are erratic. This parameter
helps CSPs in reducing future migrations and thereby reducing violations of SLA, probably committed
for a higher price, to high-priority users (

as
c).

Figure 7. Migration needed to co-allocate VMs of requests having intercommunicating Tasks

Figure 8. Average deviation from 50% capacity of individual PMs in τ τ
1 2
, and τ

3

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

33

CONCLUSION ANd FUTURE wORK

In this paper, a novel virtual machine placement algorithm AIATP for autoscaling cloud applications
that have intercommunicating tasks is presented. This algorithm has considered applications request
encompassing one or more VMs for placement rather than individual VM, a practice conventionally
used. Using placement knowledge of earlier tasks belonging to the current request, it has been
shown that AIATP can place all the intercommunicating tasks onto same PM and/or on to network
neighborhood PMs, thereby resulting in increased application performance by reducing the network
latency between these tasks. The proposed AIATP has been employed as an extension to the scheduling
polices of CloudSimPlus simulator and evaluated for metrics such as PM utilization, fragmentation,
migrations and balanced PMs. It is to be noted that the reduced value for fragmentation and migrations
along with increased value for PM utilization implies, increased operational efficiency for DC.
Experimental results have demonstrated that AIATP outperforms other considered algorithms namely,
FFD, FFI and FCFS for the identified metrics. It has been shown that use of AIATP gives increased
application performance for users and also reduces the operational costs of CSPs.

The effect of AIATP on DC power consumption, analysis of various security issues related to
placement of tasks and challenges related to integration of latest technologies like Internet of Things
(IoT) and Fog/Edge computing with the cloud are of interest for future study.

ACKNOwLEdGMENT

I would like to express my gratitude to Dr Subrata Chattopadhyay and Dr P V Anandamohan for their
contribution towards the preparation of this report.

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

34

REFERENCES

Al-Dulaimy, A., Itani, W., Zantout, R., & Zekri, A. (2018). Type-Aware Virtual Machine Management for Energy
Efficient Cloud Data Centers. Journal of Sustainable Computing: Informatics and Systems , 19.

Barclay. (2016). Overview of autoscale. https://aws.amazon.com/blogs/compute/fleet-management-made-easy-
with-auto-scaling/

Barkat, A., Diniz, A., & Ikken, S. (2015). Open Source Solutions for Building IaaS Clouds. Scalable Computing
Practice and Experience, 187-204. doi:10.12694/scpe.v16i2.1089

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.
doi:10.1016/j.future.2011.04.017

Boucher, R., Jr., Wallace, G., & Wren, B. (2018). Overview of autoscale. https://docs.microsoft.com/en-us/azure/
azure-monitor/platform/autoscale-overview

Chen, J., He, Q., Ye, D., Chen, W., Xiang, Y., Chiew, K., & Zhu, L. (2016). Joint affinity aware grouping and
virtual machine placement. Microprocessors and Microsystems, 52, 365–380. doi:10.1016/j.micpro.2016.12.006

Cui, L., Tso, F., Pezaros, P., Jia, W., & Zhao, W. (2017). PLAN: Joint policy- and network-aware VM management
for cloud data centers. IEEE Transactions on Parallel and Distributed Systems, 28(4), 1163–1175. doi:10.1109/
TPDS.2016.2604811

Gill, S., & Buyya, R. (2018). Resource provisioning based scheduling framework for execution of heterogeneous
and clustered workloads in clouds: From fundamental to autonomic offering. Journal of Grid Computing, 1–33.

Heidelberg, B. (2006). Bin-packing In Combinatorial Optimization. Algorithms and Combinatorics. Springer,
21, 426–441. doi:10.1007/3-540-29297-7_18

Li, K., Wu, J., & Blaisse, A. (2013). Elasticity-aware Virtual Machine Placement for Cloud Datacenters. IEEE
International Conference on Cloud Networking (CloudNet). doi:10.1109/CloudNet.2013.6710563

Lopez-Pires, F., & Baran, B. (2015). A many-objective optimization framework for virtualized datacenters.
Proceedings of Fifth International Conference Could Computing and Service Science, 439-450.
doi:10.5220/0005434604390450

López-Pires, F., Barán, B., Benítez, L., Zalimben, S., & Amarilla, A. (2018). A., Virtual machine placement
for elastic infrastructures in overbooked cloud computing datacenters under uncertainty. Future Generation
Computer Systems, 79(Part 3), 830–848. doi:10.1016/j.future.2017.09.021

Manoel, C. S. F., Raysa, L. O., Claudio, C. M., Pedro, R. M. I., & Mario, M. F. (2017). CloudSim Plus: A cloud
computing simulation framework pursuing software engineering principles for improved modularity, extensibility
and correctness. Proceedings of IFIP/IEEE Symposium on Integrated Network and Service Management.

Manvi, S. S., & Shyam, G. K. (2014). Resource management for infra-structure as a service (iaas) in
cloud computing. A survey. Journal of Network and Computer Applications, 41, 424–440. doi:10.1016/j.
jnca.2013.10.004

Meng, X., Isci, C., Kepart, J., Zhang, L., Bouillet, E., & Pendarakis, D. (2013). Efficient resource provisioning
in compute clouds via VM multiplexing. Proceedings of Seventh International Conference on Autonomous
Computing, 215-228.

Meng, X., Pappas, V., & Zhang, L. (2010). Improving the scalability of data center networks with traffic-aware
virtual machine placement. Proceedings - IEEE INFOCOM, 2010, 1–9. doi:10.1109/INFCOM.2010.5461930

Rahman, M., & Graham, P. (2017). Compatibility-based static VM placement minimizing interference. Journal
of Network and Computer Applications, 84, 68–81. doi:10.1016/j.jnca.2017.02.004

Shi, J., Dong, F., Zhang, J., Luo, J., & Ding, D. (2015). Two-phase online virtual machine placement in
heterogeneous cloud data center. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 1369–1374 doi:10.1109/SMC.2015.243

https://aws.amazon.com/blogs/compute/fleet-management-made-easy-with-auto-scaling/
https://aws.amazon.com/blogs/compute/fleet-management-made-easy-with-auto-scaling/
http://dx.doi.org/10.12694/scpe.v16i2.1089
http://dx.doi.org/10.1016/j.future.2011.04.017
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale
http://dx.doi.org/10.1016/j.micpro.2016.12.006
http://dx.doi.org/10.1109/TPDS.2016.2604811
http://dx.doi.org/10.1109/TPDS.2016.2604811
http://dx.doi.org/10.1007/3-540-29297-7_18
http://dx.doi.org/10.1109/CloudNet.2013.6710563
http://dx.doi.org/10.5220/0005434604390450
http://dx.doi.org/10.1016/j.future.2017.09.021
http://dx.doi.org/10.1016/j.jnca.2013.10.004
http://dx.doi.org/10.1016/j.jnca.2013.10.004
http://dx.doi.org/10.1109/INFCOM.2010.5461930
http://dx.doi.org/10.1016/j.jnca.2017.02.004
http://dx.doi.org/10.1109/SMC.2015.243

Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

35

Sridharan R. has obtained M.Sc, degree from Bharatidasan University, India in 1992 and M.S degree from Birla
Institute of Technology, Pilani, India in 1997. He was awarded PhD by National Institute of Technology, Tiruchirappalli
in 2020. He has been with Centre for Development of Advanced Computing, Bangalore in R&D division. His
research interests are in the area of Parallel and Distributed computing, Cloud and Quantum Computing. He has
published several papers in these areas in international conferences.

Domnic S. received the B.Sc. and M.C.A degrees from Bharathidasan University, Tiruchirappalli, India, in 1998
and 2001, respectively, and the Ph.D. degree from Gandhigram Rural University, Dindigul, India, in 2008. He is
currently an Associate Professor with the Department of Computer Applications, National Institute of Technology
at Tiruchirappalli, Tiruchirappalli. His current research interests are data compression, image/video processing,
and information retrieval.

Singh, A., & Inderveer, C. (2016). A survey on resource scheduling in cloud computing: Issues and challenges.
Journal of Grid Computing, 14(2), 217-264.

Stergiou, C., Psannis, K., Kim, B., & Gupta, B. (2018). Secure integration of IoT and Cloud Computing. Future
Generation Computer Systems, 78, 964–975. doi:10.1016/j.future.2016.11.031

Yokoyama, D., Schulze, B., Kloh, H., Bandini, M., & Rebello, V. (2017). Affinity aware scheduling model of
cluster nodes in private clouds. Journal of Network and Computer Applications, 95, 94–104. doi:10.1016/j.
jnca.2017.08.001

Zhaolong, G., Shingo, Y., & Gupta, B. B. (2017). Analysis of Various Security Issues and Challenges in Cloud
Computing Environment: A Survey. In Identity Theft: Breakthroughs in Research and Practice. IGI Global.

Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K. M., & Li, J. (2016). Virtual machine consolidated
placement based on multi-objective biogeography-based optimization. Future Generation Computer Systems,
54, 95–122. doi:10.1016/j.future.2015.02.010

ENdNOTE

1 Tasks and VM are interchangeably used.

http://dx.doi.org/10.1016/j.future.2016.11.031
http://dx.doi.org/10.1016/j.jnca.2017.08.001
http://dx.doi.org/10.1016/j.jnca.2017.08.001
http://dx.doi.org/10.1016/j.future.2015.02.010

