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ABSTRACT

Due to pay-as-you-go style adopted by cloud datacenters (DC), modern day applications having 
intercommunicating tasks depend on DC for their computing power. Due to unpredictability of rate 
at which data arrives for immediate processing, application performance depends on autoscaling 
service of DC. Normal VM placement schemes place these tasks arbitrarily onto different physical 
machines (PM) leading to unwanted network traffic resulting in poor application performance and 
increases the DC operating cost. This paper formulates autoscaling and intercommunication aware task 
placements (AIATP) as an optimization problem, with additional constraints and proposes solution, 
which uses the placement knowledge of prior tasks of individual applications. When compared 
with well-known algorithms, CloudsimPlus-based simulation demonstrates that AIATP reduces the 
resource fragmentation (30%) and increases the resource utilization (18%) leading to minimal number 
of active PMs. AIATP places 90% tasks of an application together and thus reduces the number of 
VM migration (39%) while balancing the PMs.
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INTROdUCTION

The rate at which data is generated by modern day applications is growing exponentially and is 
unpredictable with respect to time. Amount of information contained in the data are also disruptive 
for predictive data processing and analytics functionality. This data needs to be analyzed timely for 
building business intelligence leading to better decisions. Hence, these applications depend heavily on 
cloud computing paradigm. Using pay-per-use mode, cloud computing provides autoscaling services 
to manage the sporadic resource requirement of modern day applications. As industries desire reduced 
time to market for their applications, they adopt to cloud. Cloud operates via DC (datacenters), has 
huge computing and storage resources, resulting in heavy electric power consumption. This leads to 
higher operational cost for the CSPs (cloud service provider) and eventually the same will be passed 
to the customers. Hence, the current focus of researchers is to identify efficient DC management 
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leading to reduced power consumption while delivering high quality service to the customers. This 
presents several research challenges including resource management (Manvi, & Shyam, 2014). These 
challenges need to be addressed after considering multiple parameters related to application types, 
cloud services and networks of DC.

Application types could be multi-tier web applications, big data processing applications, machine 
learning and multimedia applications, and high-performance applications. Applications such as video 
surveillance, real time gaming, real time streaming and augmented reality have intercommunication 
tasks1 which are too sensitive towards latency and also need more computational power. For example, 
VMs hosting database tasks and hosting application tasks need intercommunication in three-tier web 
applications. Similarly, VMs that hosts object tracker task in a video surveillance system that uses 
multiple cameras covering multiple areas, need inter task communication. As these applications are 
sporadic resource requester by nature, they depend heavily on elastic capability. Typically, these 
applications having group of jobs (could be long-duration jobs needing autoscaling), execute their 
intercommunicating or non-intercommunicating tasks using VMs (Virtual Machines instance) in a 
DC. Autoscaling service operates on an adjustable capacity (minimum and maximum number of 
VM), (Boucher Jr, et al, 2018; Barclay, 2016) within which the tasks need to be executed. Without 
violating this capacity range, addition or deletion of VM instances shall be carried out, upon meeting 

the resource threshold value specified by the user. 
Virtual Machine Placement (VMP) (Lopez-Pires & Baran, 2015) is the process of selecting 

suitable Physical Machine (PM) to place the requested VM. VMP taking into account the auto-
scalability of the applications along with intercommunication of theirs tasks is a challenging cloud 
problem.

Consider an example of three application requests that are currently (at time T0) executing 
in a DC. Let ncR1vm1 and ncR3vm1 be the VMs of first and third application respectively, which 
are non-intercommunication type. Let the second application have two inter-communicating VMs 
(cR2vm1 and cR2vm2) that needs autoscaling. Assume that at time T1, fourth and fifth requests arrive 
to the DC. While fourth is a fresh non-intercommunicating type request (ncR4vm1), the fifth request 
(cR2vm3) is an additional VM of the second request that needs inter communication with cR2vm1 and 
cR2vm2. Further, let these tasks follow the communication pattern represented by arrows, as shown 
in Figure 1(a). Assuming that we have two PMs to place these tasks, using First Come First Serve 
(FCFS) VMP algorithm along with load balancing, placements of VMs at T0 resembles to that of 
Figure 1(b). Placement of tasks at T1 is shown Figure 1(c). If all the tasks are placed onto single PM 
itself, the other PM could be switched off to reduce the overall power consumption. Else placing all 
the intercommunicating tasks (cR2vm1, cR2vm2 and cR2vm3) on to the same PM or on to a network 

Figure 1. Sample VM and its placement using FCFS
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neighborhood machines will reduce the power consumption used for communication, as network 
latency among these tasks is minimal.

In a DC, neighborhood is defined as shortest path used for inter-server communication adhering 
to the pre-defined policies and topologies of the DC. Typically, servers are wired together to form a 
cluster that are inter-connected using routers, switches and aggregators to form a DC. Governed by 
network polices related to performance and security, an application over DC network has complex 
communication patterns. Network operators ensure these policies by deploying “middleboxes” like 
firewalls, load balancers, IPS (intrusion detection and prevention systems), etc. The policies demand 
that the traffic pass through a sequence of specified middleboxes.

Consider a flat-tree based DC network architecture as shown in Figure 2 in which, server S5 
currently (time T0) executes two VMs (V1 and V2) of an autoscaling application. Assume that at time 
T1 third VM (V3) of the same application needing intercommunication with (V1 and V2) needs to be 
placed. Also, assume that S5 does not have enough resources to hold V3. Based on the communication 
path, S6 is the best suitable PM to place the V3. If it is not possible, next best possibilities are: S3 or (/) 
S4, S1/S2 and S7/S8 in that order. It is to be noted that even though the communication from S5 to S1/S2 
and S7/S8 needs five network-hops, it is preferred to have S1/S2 , as communication to S7/S8 mandatorily 
needs to go through the IPS2 and hence wastes the network resources.

Motivation
From the above explained two scenarios, we can conclude that intercommunicating tasks are bound 
to give better performance, when they are placed together on to the same PM (Meng et al., 2010) or 
network neighborhood PM (Cui et al., 2017). This also reduces the power consumption of DC due 

Figure 2. DC Architecture with policy aware placement
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to reduced network latency and probable early VM migrations. Hence, after formulating AIATP 
(Autoscaling and Intercommunication Aware Tasks Placement) problem, authors propose an efficient 
AIATP algorithm to improve the resource utilization of DC. Novelty of this algorithm is, using the 
prior-tasks-placement knowledge of a request (application) for placement of its additional tasks 
adhering to co-allocation and fixed PM constraints. In summary, contributions of this paper are as 
follows:

• A mathematical modeling of Autoscaling aware VMP for intercommunicating tasks (AIATP) 
of cloud applications is developed. This model considers applications, having group of tasks or 
single task during their life-time for placement instead of individual tasks, a widely followed 
practice is presented.

• A comprehensive task placement algorithm is proposed, which uses prior-task-placement 
knowledge of autoscaling applications for the placements of their additional tasks. This algorithm 
produces VM-to-PM mapping with best possible network efficiency and thereby increases the 
application performance.

• Results of extensive simulation are presented to show the effectiveness of the proposed algorithm 
via reduced VM migrations and resource fragmentation, improved resource utilization and 
maximum co-placed tasks for autoscaling requests.

Rest of this paper is organized as follows. Related Works reviews the available literature related 
to the problem. Next problem formulation is described and proposed modeling is illustrated using 
an example. Subsequently, the proposed algorithmic solution along with its complexity is discussed. 
After presenting the implementation details, the paper proceeds to evaluate the AITAP with other 
algorithms before presenting the conclusion.

RELATEd wORKS

As cloud computing is built on the concept of resource sharing through internet, there exists lot of 
challenges related to various cyber security (Zhaolong et al., 2017). Further using cloud as base 
new technologies like IoT, fog/edge computing have emerged and hence secured integration of these 
technologies with cloud is paramount (Stergiou et al., 2018). However, authors restrict the focus of 
the present work only to placement algorithms.

(Rahman & Graham 2017) have proposed static initial VM placement where, VMs are co-placed 
based on their compatibility in terms of their varying resource requirements. In this work, PMs and 
VMs are differentiated based on their past usage as resource critical and non-critical. But, they have 
not considered the autoscaling requirements of an application hosted by these VMs.

(Cui et al., 2017) have brought out the importance of policy and network awareness before 
considering VM migrations. They have demonstrated an efficient VM management scheme which 
reduces the communication cost while considering PMs to migrate the VMs.

Further, some contributions have explored two-stage approach as well for VMP problem. 
(Beloglazove et al., 2012) proposed two stages for the VMP: (i) initial placement of VMs and (ii) 
optimizing the current placement. In this, using CPU utilization of the VMs, a Modified Best Fit 
Decreasing (MBFD) algorithm was used for initial placement and the second phase was triggered 
whenever PMs breach the CPU thresh-hold value. Without considering autoscaling, (Zheng et al., 
2016) have subdivided the VMP as two sub-problems. A Best Fit (BF) algorithm, used for incremental 
placements acted as first step followed by another step in which, periodical trigger of VM consolidation 
was suggested.

Another two phases online VMP was proposed by (Shi et al., 2015) where PMs and VM requests 
are represented as vectors. During the first phase, based on cosine similarity of the vectors, PM types 
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were assigned to VM requests and based on resource requests, VMs were categorized for each PM 
type. Using utilization thresholds of PMs, reconfiguration of VMs was triggered in the second phase. 
But, authors have not considered the elasticity in their work. Another two-phase approached for VMP 
proposed by (López-Pires et al., 2018) has considered complex IaaS environment including elasticity 
but did not consider the application performance while placing the additional VM of autoscaling 
requests.

While (Yokoyama et al., 2017) have used affinity awareness among the VMs to create the cluster 
node and do the placement, (Chen, et al., 2016) have simply used affinity awareness among the VMs 
for their placements. In (Chen, et al., 2016), it was demonstrated that the application running on the 
VMs that are placed using this placement scheme improves the performance rather than placing them 
individually without knowing their affinity. (Meng et al., 2013; Meng et al., 2010; Cui et al., 2017) 
have demonstrated the importance of network awareness during VM placement for an efficient DC 
management. (Al-Dulaimy et al., 2018) present a distributed approach for VM consolidation and 
use Multiple Choice Knapsack for VMP. (Li et al., 2013) discuss the elasticity aware VMP under 
the limitation of both PM capacities and bandwidth capacities to present a hierarchical VMP, where 
network-switch capacity from bottom to top is accumulated and used as a parameter for VMP.

Detailed survey on issues and challenges involved in cloud resource scheduling has been presented 
(Sukhpal & Inderveer 2016). Further, (Sukhpal & Buyya 2018) proposed a scheduling frame-work for 
resource provisioning by autonomic offering in heterogeneous cloud. However, these works have not 
addressed the situations needing inter-communication among the various tasks of single application.

To the best of author’s knowledge, this work is the first attempt that can optimize the placements 
for the tasks of an application that needs autoscaling and intercommunication, using the knowledge 
of prior-placement of tasks from these applications.

PROBLEM STATEMENT ANd PROPOSEd MOdEL

This section explains the problem addressed through this work and its mathematical modelling 
followed by an illustrative scenario.

Problem Statement
Applications that want to use cloud resources can be broadly classified as those needing autoscaling 
service and those not needing autoscaling. Further these applications can be differentiated as those 
having intercommunicating tasks and non-intercommunicating tasks. As implemented by popular 
CSPs (Boucher, et al, 2018; Barclay, 2016) applications aspiring to have autoscaling service need 
to specify a minimum (minVM) and maximum (maxVM) number of instances to run and add or 
remove VMs automatically based on a set of rules. In effect, the number of VMs dedicated to these 
applications during theirs life-time shall be between minVM and maxVM.

VM requests emanated from the applications are queued for predefined time period in a batch 
and are processed together in a DC. These requests can be classified into three types, namely (a) 
new VM(s) requests, (b) migrating VMs requests and (c) incremental VM requests of autoscaling 
applications. Efficiently placed minVMs and their incremental VMs can give various benefits to 
both user and CSP. Firstly, Incremental VMP, when solved as a fixed placement problem is bound 
to increase the application performance as network latency is avoided. Secondly, placing minVMs 
together reduces the potential migrations, as these requests are normally long duration jobs during 
server consolidation. This reduced migration and network latency lead to minimal power consumption 
in DC. Thirdly, as individual PMs are proposed to be balanced with VMs serving both autoscaling 
and non-autoscaling requests, SLA violations for an autoscaling requests are bound to be minimal. 
This is because forced migration if any, to accommodate additional VMs for autoscaling requests, 
will start from non-autoscaling VMs.
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Encouraged by above mentioned benefits, a model to the problem of identifying efficient 
placements for intercommunicating tasks of an autoscaling application is proposed.

Proposed Model
This model classifies the request into three types: autoscaling requests having intercommunicating 
tasks (

as
c )  non-autoscaling requests but having intercommunication ( )c  and all other requests (

R �)  or modeling.
To formalize the problem, we make the following assumptions:

• Let K τ( )  tasks belonging to each request of type 
as
c τ( ) . c τ( )  and   be pooled in the batch 

to be placed at the time slot τ  1≤ ≤τ T ;
• Let p p p p

n
= …{ }1 2

, ,  and v v v v
m

= …{ , , }
1 2

 be the identifier PM and VMs constrained with 
D-dimensional resource vectors R (number of CPUs, memory size, storage space, bandwidth 
etc.);

• Let r k
k
, .∈ …{ }1 α  be a positive integer that uniquely identifies the requests defined by a four 

tuple:

r u VM minVM maxVM
type

= { }, ,,  

where:

minVM maxVM&  

are number of VMs:

VM micro small medium large xlarge
type
= { }, , , ,  

u
as
c c= { }  , ,  

Note that when u
as
c∉ ⇒�R  maxVM = 0 .

Let S T( )  be the requests sequence at the time slot τ  1≤ ≤τ T . Then, from the assumptions 
we have:

S T r r K v i minVM
k

k k i( ) = ( ) = ( ) = ∑ ≤ ≤( )
=
∑

1

1
α

τ τ τ( ), ,  

Let function Φ  indicate the placement schema Φ r p
k( ) =  if task of r

k
th request is placed on 

the p th PM. Then the objective is, given a request sequence S T T( ) ≤ ≤, ,1 τ  and PMs p p n,1≤ ≤  
with capacity   find a placement function Φ :
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minimize n
T

τ

τ
=
∑ ( )

1

��

 (1)

subject to the constraints presented below.

• Resource Constraints: Ant any given point of time across different time slot, combined resource 
requirements of VMs in a PM cannot exceed the resource capacity of PM. During the placement 
of K τ( )  VMs belonging to r

k
τ( )  request in the τ th time slot, the PMs identified to host these 

VMs, are subject to primary resource constraints:

∀ ≤ ≤ ≤ ≤1 1p n d D,  

r v

r

vp v
d

k

k

X R
α τ

∑∑
=

( )

≤
1

*   (2)

where R
v
d  1≤ ≤d D  is the resource demand of vth  VM and:

X
if v VM is placed onto the p PM

otherwisevp

th th

=
1

0

,

,

      

       

 

                                








 

• Placement Constraints: Each VM of user request r  has to be placed to run on a single PM:

∀ ≤ ≤1 p n,
r v

r

vp

k

k

X
= =

( )

∑∑ =
1 1

1
α τ

 (3)

Adjusting resource capacity of individual PM and VM in each dimension measured on different 
scales to a notionally common scale is called normalization. Each item has resource vector 
R R R R
i i i i

d= …{ , , . }1 2  and each dimension l l d, ,∈ …

1  denotes resource (CPU, memory etc.) demand 

size R
i
l  which is normalized 0 1…  and capacity of each PM is also normalized to 1, then we have:

X
vp
τ( ) ∈ { }0 1, and n τ( ) ∈ { }0 1,  (4)

• Co-Allocation Constraint: In any request of type 
as
c  and c , let tasks v

1
τ( )  and v

2
τ( )  have 

co-location requirement and are required to be co-located onto same PM p n∈ …

1 , then we 

can combine tasks v
1
τ( )  and v

2
τ( )  to one group and form a new task v

new
τ( ) . For each resource 

dimension d , the size of the group task is denoted by sum of tasks v
1
τ( )  and v

2
τ( ) :



Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

24

R R R
v
d

v

d

v

d

new τ τ τ( )
= +( ) ( )1 2

 (5)

Hence, we add the following constraint to AIATP model:

∀ ∈ …

p n1 , ∀ ∈ …


{ } ∈ ( ) ∈ { }v v minVM r r

k k as
c c

1 2
1, & ,τ    

X X
V p V p1 2
=  (6)

• Balanced PM Constraint: Individual PMs shall contain task of requests belonging to all types 
namely,  

as
c c,  and  . Note that this constraint is for initial task placements only and not for 

additional tasks placements:

∀ ≤ ≤1 p n,
a

a
b

b
c

b
r r r

= = =
∑ ∑ ∑( )< ( )+ ( )

1 1 1

α α α

τ τ τ
~

 (7)

where, r
a as

c∈  , r
b

c∈   and r
c
∈  . By adhering to this constraint, migration-related SLA violations 

during server consolidation can be avoided for 
as
c  requests, as autoscaling requests are expect to 

utilize the resource for longer duration.

• Comment: This constraint might give the impression of forced resource fragmentation and this 
is true, when small numbers of VMs are considered for placements. However, in real world DCs, 
the number of VMs considered for placement will be huge and as number of VMs increases, the 
resource fragmentation tends to reduce which is demonstrated through our simulation.

• Fixed PM Constraint: Let 
ij

, where i j m,  1…{ }  is a requests-relation matrix that represents 
relation among VMs of individual requests during theirs life-time. Each element of this matrix 
is filled with r

k
 the request identifier, to which the current VM belongs. Let r

k
' ′( )τ  denote the 

additional VM of an autoscaling request r
k
τ( ) . Then, for each additional VM of an autoscaling 

request, we add the following fixed PM constraint:

∀ ∈ ≤ ≤r k
k as

c , ,1 α x r r
vp k k
= ( ) =′' τ  (8)

• Comment: On availability of resources, this constraint helps us in placing additional VM request 
of autoscaling user at time ′τ  on to the same PM where the earlier VMs of this request at time 
τ  are placed. Otherwise, the placement is achieved by migrating the non-autoscaling requests 
VM(s) from the said PM or from the nearest network neighborhood machine so that the 
intercommunication cost of VMs belonging to this request over the period of time will be minimal.

Hence, the objective (1) with constraints of (2), (3), (6) and (7) needs to be achieved for an 
effective initial task placement of an intercommunication needing request while the objective (1) 
with constraints of (2), (3) and (8) needs to be satisfied during the additional VM requests of an 
autoscaling request.
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Claim: AIATP is NP-Complete.
Proof: As per constraint (6), resource demand vectors of all the VMs specified by minVM of request 

having intercommunicating tasks, are combined to form a new VM having higher resource demand 
vector. Characteristics of VM, an equivalent to an item in a bin-packing problem, are not altered 
by adhering to this constraint. Similarly, constraint (7) which ensures that the individual PMs are 
balanced does not change the characteristics of bin while placing the item. As stated in (4), we 
can equate the normalized the AIATP problem to that of normalized VMP problem by dividing 
VM sizes with the corresponding resource capacities of PMs. Hence, similar to general VMP 
problem, AIATP is also NP-Complete.

Since minimization problem of AIATP is NP-Complete, we cannot obtain the optimal placement 
solutions in polynomial time unless P=NP (Heidelberg, 2006). Hence, we consider an algorithmic 
approach to get an approximate solution in this paper.

Illustrative Scenario
For an illustrative purpose, initially at time t0 consider 8 that requests are pooled in the batch and 5 
PMs are available to place the VMs of these requests. Among these 5 PMs, assume that first 2 follow 
different network policy than that of remaining 3 PMs. Also, assume that requests 1, 3, 4, 6, are of 
type non-autoscaling and requests 2, 5, 7, 8 are of type as having 3, 2, 2, and 3 respectively as the 
minVM. For the sake of simplicity in this illustration, we are not considering the resource dimensions 
of PMs and VMs.

After the completion of initial VMP using first fit algorithm, VM’s request relation matrix will 
be formed as 

t0
 shown in Figure 3. In this matrix, the columns correspond to number of PMs and 

the individual elements represent the VM having unique request identifier as its value. Repetition of 
same value for the elements indicates that these elements belong to same request, while number of 
such repetition represents the value of minVM in that request. Consider the placement scheme for the 
request 8: this request has 3 minVMs and they are placed together in PM 4. Similarly, the placement 
scheme for other VMs can also be identified. Note that 0 value elements represent the free space 
available in the PM. Even though request 8 can be placed on to PM 3, owing to constraint (7) it is 
actually placed on PM 4.

Let us look at the changes in the request relation matrix   for various time intervals. It is to be 
noted that in the subsequent time intervals there can be two types of requests: addition or deletion of 
VMs by the already running autoscaling requests; new autoscaling and other requests types can be 
present. Assume that request 2 asks for an additional VM, request 8 asks to delete a VM and new 
autoscaling request 9 with minVM as 1 and non-autoscaling request 10 are pooled in at time t1. 
Assuming that, all other VMs which are initially placed are still in running state, request 1 is migrated 
from PM1 to PM2 to accommodate the additional VM of request 2 as shown in 

t1
 of Figure 3. 

Further, when additional request emerged from request 2 at time t2, together with a non-autoscaling 
request 12 and autoscaling request 11 having 2 minVM the matrix looks like 

t2
 of Figure 3. Similarly, 

Figure 3. Transistion of Autoscaling request-relation matrix for different timeline
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assume that at time t3 also, the request 2 asks for an additional VM. Since PM1 does not have enough 
capacity to place this additional VM, it is to be placed onto a network neighborhood machine, which 
is PM 2 in our case, as this is an additional VM of autoscaling request 1. Hence, request 4 is moved 
to PM 3. The transformations at time t3 are depicted in 

t3
 of Figure 3.

AUTOSCALING ANd INTERCOMMUNICATION 
AwARE TASK PLACEMENT ALGORITHM

In this section, we present a VMP scheme guided by AIATP problem modelling based on request 
types (

as
c , c , and   rather than VMtype for optimal operations of DC. This scheme recognizes 

autoscaling and tasks-intercommunication of the requests for placements and network policy for 
migration. Initial placement focuses on placing the VMs of individual requests efficiently, so that 
future migrations and network overheads are minimal. This also ensures that the overheads in-terms 
of identifying suitable VMs and PMs that are candidates for migrations are reduced. Subsequently, 
additional VMs of an autoscaling requests are placed in such a way that the inter-communication 
among the tasks of this request are confined to the individual PM or network neighborhood PMs 
resulting in better application performance.

To develop such an algorithm, we make some simplifying assumptions as follows:

• DC has enough capacity to serve all the requests including additional VMs.
• In consistent with CSP, Amazon (Boucher Jr, et al, 2018; Barclay, 2016) users are expected to 

specify the minVM and maxVM, which captures application’s autoscaling and intercommunication 
requirements.

• Without loss of generality, we assume that minimizing cross-traffics and migrations of VMs 
reduces the overall energy consumption of a DC and increases its operational efficiency.

In this work, initial VMP is achieved by adhering to constraints (2), (3), (6) and (7). Fixed 
placement pattern that includes network neighborhood machines, is adopted for the additional 
VM of an autoscaling requests. The total (original) capacity, current utilization of PM which is in 
consideration for placement, and resource demand of VM are denoted by Ct, Cu and Cr respectively. 
Note that all these parameters are defined in terms of resource vectors (number of CPUs, memory, 
storage, bandwidth etc.).

AIATP algorithm organizes the tasks, after extracting their details from the individual request, 
according to various constraints listed in problem modelling section. Subsequently these tasks are 
sent to ALLOC sub-function along with candidate PM, which accomplishes the placements. Upon 
non-availability of enough resources in the PM, ALLOC function initiates new PM and places the 
VMs. The detailed description of the algorithm follows.

AIATP algorithm

Require:  batch containing requests at time τ  active PM number n
Result: VM placement  /* refer section 3 for definition of symbols  
*/ 
1.     while batch != NULL do
2.          Create requests identifier r K

k
τ τ( ) ← ( )

3.     end while 
4.      for each r

k
τ( )

5.             if r
k
τ( ) for deletion
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6.                  process scale-down of VM 

7.             else if r
k
τ( ) for addition /* fixed PM rk' ′( )( )τ  

constraint */ 
8.                C

u
 = ALLOC (X r p

k n
, , ' )

9.             else  if u
as
c∈   /* co-location constraint */

10.                     X minVM R VM
v

d
type

← ( )( )*
τ

11.                      add X  to List1
12.        else if u c∈ 
13.                      X minVM R VM

v

d
type

← ( )( )*
τ

14.                      add X  to List2
15.        else if u ∈ 
16.                    X ←

 
R VM
v

d
typeτ( ) ( )

17.                       add X  to List2
18.     end for
19.     sort on VM

type
: List1 in descending order

20.     sort on VM
type

: List2 in ascending order
21.     while List1  !=  NULL do
22.        C

u
 = ALLOC (X u p

n
, , )

23.        remove X  from List1
24.        if C

u
 >= 1/2 * C

t
) /*balanced PM constraint */

25.          for each X in List2
26.              C

u
 =ALLOC(X, u p

n
, )

27.               remove X from List2
28.               if (C

u
 = C

t
) break;

29.          end for
30.     end while
31.     for each X in  List2 
32.          C

u
 = ALLOC(X, up

n
)

33.     end for

Explanation of AIATP Algorithm

This algorithm does a comprehensive tasks placement by considering all types of tasks ( 
as
c c,  and 

)  instead of concentrating only on autosacling requests that have intercommunicating tasks. 
Individual requests, both from cloud service and users, are collected into a batch. Additional VM of 
autoscaling requests emanating from cloud services, are also queued to the same batch. Each request 
is defined by four-tuple as explained in problem formulation. However, if the request is emanated 
from cloud service then, information indicating whether the request is to scale-up or scale-down the 
VM, and a unique request identifier through which the four-tuples can be extracted, defines the 
request.

At fixed time slot τ  requests pooled in the batch are differentiated as fresh request and additional 
request. After extracting VM details from VM

type
, each request are segregated as 

as
c , c  and   

before storing them in two different lists namely List1 and List2 [lines 9- 17]. Note that, according 
to co-allocation constraint of the proposed AIATP, the demand resource vectors of all the VMs, given 
by minVM  of new requests are combined to form a new VM and considered as single placement. 
Hence, this process is completed before adding the VM details to List1 [line 10, 13]. If the request 
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is for scale-up or scale-down of VM from an existing autoscaling request, then PM details are extracted 
from the request identifier and processed accordingly [lines 5-8]. Sorting of List1 from large to small 
[line 19] and List2 from smaller to larger [line 20], ensures that individual PMs are filled with 
combination of large sized VMs of 

as
c  request with that of small sized VM of c  and   requests. 

This helps in accommodating the additional VMs of 
as
c  request in the future with minimum SLA 

violations if any. We accomplish the adherence to balanced PM constraint [lines 21-29] by allocating 
VMs of 

as
c  request till PM capacity reaches half of its capacity, then switch to List2 and start 

allocating the VMs of c  and   users until the PM is fully used. Once the particular PM is full, the 
control switches back to List1. Finally, leftover VMs of c  and   requests if any, are also allocated 
[line 30-32] on to available PMs instead of considering them with the next batch. The actual allocation 
of VMs on to PMs is done by ALLOC function, which is explained next.

Mapping of VMs to PMs (ALLOC)

Sub function ALLOC: Mapping of VMs to PMs
Input: X (VM to be placed), rk

, pn (candidate PM)
Output: C

u

1.     extract  u  from  r
k

2.     C C C
a t u
← −  and C X R

r
d= ⋅

3.     if  u
as
c∈   and X is an additional VM

4.        if (C C
a r
> ) map X onto p

n

5.        else if (p X R C
n

d
r

� R′ ⋅ ∈ ≥ )

6.           migrate ′X  from p
n
 using FirstFit

7.           map X onto p
n

8.        else map X  onto n/w neighborhood machine by 
repeating step 4-8 
9.        else if ( )C C

a r
>  map X onto  p

n

10.     else map X onto new PM
11.     return C

u

For ALLOC function VM, request type and candidate PM are given as input. After calculating 
available C

a
 and extracting resource demand vector C

r
 of current VM in consideration for placement, 

[line 3] function proceeds to map the VM onto the candidate PM given as the input. If the request is 
for an additional task of 

as
c  requests, on availability of enough resources greater than or equal to 

Cr, it is directly mapped on to the PM [line 5]. Otherwise, suitable VM is migrated belonging to   
or combination of VMs belonging to c , from that PM using First Fit algorithm and places the 
additional VM on to that PM. [lines 6-8]. Upon unsuccessful placement, suitable PM from network 
neighborhood is identified and executes steps 6-8 until successful placement happens. If the request 
is new one (

as
c , c  and  ), then on availability of enough resources, we directly map the VM onto 

the give PM, failing which, new PM is initiated and mapping of VM is done[lines 10-11]. Finally, 
the current utilization of the PM used for the latest placement process is returned to the AIATP 
algorithm.

Cost Analysis of AIATP
Number of VM requests (N) in the batch will be a modest constant. For example, if scan interval of 
a batch is 5 minutes and on an average 10 VM requests get queued up, then AIATP needs to scan 
[lines 3-16] these 10 requests only and hence the cost is O(N). Cost of sorting the List1 and List2 is 
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O(N log N). Since List1 and List2 are of size O(N/2), the following loop[lines 19 - 28] will also 
execute O(N) times, implying that Allocate, will also be called O(N) times. The inner loop having 
break [line 27] will execute once sufficient VMs of c  and   are placed matching to that of VMs 
from 

as
c . As the number of VMs in a PM is bounded by a constant, the cost of inner loop [lines 

24-27] is O(1). Last loop [line 29-31] that places the leftover VMs also has a cost of O(N). Let M be 
the number of candidate PMs in sub function ALLOC, then packing the VMs onto PM, results in 
maximum cost of O(M). Therefore total cost of AIATP is O(N log N) + O(M). Cost of the well-known 
algorithm like FFI/ FFD and FCFS which are under consideration for this work are O(N log N) and 
O(N2). Hence, cost of AIATP is asymptotic to FFI/FFD and also gives better application performance 
along with reduced operation cost for DC.

IMPLEMENTATION

Efficiency of any VMP algorithm needs to be evaluated in a large-scale cloud platform. However, it is 
difficult to conduct the repeatable VMP experiments in a real production cloud platform. Even though, 
there exist few open source solution to build own cloud environment (Barkat et al, 2015), researchers 
mostly uses simulation environments to evaluate their new algorithms. Hence, the proposed AIATP 
algorithm is also evaluated using CloudSimPlus (Manoel, et al., 2017) simulator using randomly 
generated VMs. The algorithms were implemented as an extension to SimpleVmAllocationPolicy, 
which determines how VMs are assigned to the host and additional tasks are assigned using 
HorizontalVmScalingSimple classes.

The proposed algorithm, written in Java, is tested on a Dell workstation with Intel Xeon 3.30Ghz 
and 16Gb memory, having x64 architecture. The simulation is performed over a datacenter made 
up of twenty homogeneous physical machines whose configuration is presented in Table 1. User 
requests are constructed using random generated values for u, VMtype, minVM and maxVM. VM 
types and their resource characteristics are adopted similar to Amazon-AWS autoscaling service, is 
presented in Table 2.

For each experiment, we created three bunches of randomly generated requests in the ratio of 
2:1:1 for time slot τ τ

1 2
,  and τ

3
. Total resource demand of VM is approximately made equal to that 

Table 1. Host configuration used for simulation

Core RAM VMM Storage MIPS

16 64 GB XEN 1 TB 100000

Table 2. VM characteristics adopted from Amazon

M i c r o S m a l l M e d i u m L a r g e X l a r g e

vCPU Memory(GB) 1 
1

1 
2

2 
4

2 
8

4 
1 6

Table 3. Characteristics of requests in a batch

Total 
Requests

Requests 
Type: 

�
as
c

Requests 
Type : 

�c

Requests 
Type: �

New VM 
Requests: 

�
as
c

New VM 
Requests: 

�c

New VM 
Requests: 
�

Additional 
VM Requests

Delete VM 
Requests

40 9 11 20 22 32 40 8 4
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of total resource capacity of n  PMs. While the first bunch is made up of fresh requests, the second 
and third bunch can also contain requests for scale-up or scale-down of resources from those of earlier 
autoscaling requests in addition to the fresh requests. Representing workloads, tasks having 1000 
byte is attached with each VM. Characteristics of requests in a single batch are presented in Table 3. 
While delete request is relevant for batches used in τ

3
 onwards additional request is relevant for 

batches used in time τ
2

 onwards, the remaining columns are valid for all batches. Values of new VM 
requests for type 

as
c  and c  are equal to the number of minVMs instance requested.

Running the simulator with a request batch as input for FFD, FFI, FCFS and AIATP algorithms 
constitute single experiment for our study. To avoid transient anomalies, we run ten such experiments 
with different set of request batches and collect the following metrics.

Resource Utilization
Figure 4 depicts the average resource utilization of all 20 PMs involved in each experiment in 
percentage terms. When we calculate average host utilization over ten experiments each for the three 
timeslots, AIATP outperforms other algorithms by using 18% more. Slope of the trend lines drawn 
in dotted-lines also indicates that the resource utilization of other algorithm is reducing as compared 
to AIATP when more requests are served.

Resource Fragmentation
As explained in the previous section, three groups of requests have been created for each experiment. 
While the combined resource demand capacity of the first group is approximately equal to the combined 
capacity of 10 PMs, the capacity of remaining two groups is equal to that of 5 PMs each. In order to 
measure the efficacy of AIATP with other algorithms in our consideration, we normalize the number 
of PMs utilized for placing each request groups to 10, 5, and 5 respectively. When we consider the 
placements across the timeslots, fully non-utilized PM count increases with other algorithms whereas, 
it is decreasing for AIATP by 30% as indicated by the trend lines of Figure 5. This indicates that the 
fragmentation created as AIATP adheres to constraint (7), is reduced over the period of time. Reduced 
fragmentation and increased utilization leads to minimal active PMs.

Autoscaling Request Placement

Next parameter in our consideration is success of placing VMs of �
as
c  type request on to the same 

PM. This is believed to improve or at least maintain the performance of an application executing 
using these VMs (Chen, et al., 2016; Meng et al., 2013; Meng et al., 2010; Cui et al., 2017) as inter-
communication among them is minimal. It is to be noted that, from time τ

2
 onwards the autoscaling 

requests can be an addition/deletion of VM for an existing request or for a new one. The same is 

Figure 4. Average PM Utilization during each experiments
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portrayed through different shades for each experiment in Figure 6. The actual number of requests 
placed during these timeslots is also shown (note that the y-axis is defined by the legend on the right). 
Trend lines of this picture display that AIATP outperforms, by placing all the request onto the same 
PM during the timeslot τ

1
 and τ

2
. However, in τ

3
 understandably, it places only 90%, because of 

the combined resource demand by some individual requests have exceeded the capacity of individual 
PM and hence, got placed on the network neighbourhood machines. Obviously, this led us to analyse 
the migration needs of algorithms that are in our consideration.

Potential Migration Needed

Potential number of migrations needed to place all the VMs of 
as
c  and �c  requests on to the same 

PM across τ τ
1 2
,  and τ

3
 for all the algorithms is calculated for our next experiment. It is to be noted 

that this metric is applicable to AIATP from τ
2

 onwards only. Figure 7 indicates along y-axis, the 
number of VM migrations needed for adherence of constraint (6), when using FFD, FFI anf FCFS. 
Evidently, this count is zero for AIATP at time τ

1
 and slowly increases over �τ

2
 and τ

3
 due to forced 

migration of VMs to accommodate additional VMs. Number of migrations is directly proportional 
to the number of autoscaling requests, having minVMs = 1for other algorithms. For AIATP, number 
of migrations is directly proportional to that of additional VMs requested. So the cost of VM migration 
and the performance of application running in these VMs are directly proportional in case of AIATP. 

Figure 5. Resource Fragmentation across time slot

Figure 6. Placement of Autoscaling requests having intercommunication Tasks on same PM



Journal of Organizational and End User Computing
Volume 33 • Issue 2 • March-April 2021

32

Hence, optimal number of minVMs together with reduced number of additional requests will yield 
better performance of AIATP.

Balanced PMs
Final evaluation parameter is to identify how well-balanced are the individual PMs. As per the 
constraint put forth in (7), individual PMs of datacenter needs to be blanced in-terms of hosting VMs 
of autoscaling requests needing intercommunication together with VMs of other type of requests. 
This ensures that, if enough resources are not avilable to host the additional VM of 

as
c , in a particular 

PM, then migration of VMs belonging to R� and c  in that order is affected to accommodate the 
additional VM.

First, resource utilization percentage of active PMs for hosting VMs of 
as
c  in each experiment 

is calculated. Obviously, the remaining resources, after accounting for fragmentation if any, are 
utilized for hosting VMs of   and c . Subsequently, average standard deviation of placement 
variance from 50% for all the active PMs in an experiment is calculated. Ten such experiments are 
conducted, in order to conclude the findings,. The same is presented in Figure. 8 for timeslots τ τ

1 2
,  

and τ
3
 respectively. When considering placements across timeslots, as expected standard deviation 

increases for AIATP due to additional requests getting placed onto same PM. Standard deviation of 
AIATP is still better and predictable than those of FFD, FFI and FCFS which are erratic. This parameter 
helps CSPs in reducing future migrations and thereby reducing violations of SLA, probably committed 
for a higher price, to high-priority users (

as
c ).

Figure 7. Migration needed to co-allocate VMs of requests having intercommunicating Tasks

Figure 8. Average deviation from 50% capacity of individual PMs in τ τ
1 2
,  and τ

3
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CONCLUSION ANd FUTURE wORK

In this paper, a novel virtual machine placement algorithm AIATP for autoscaling cloud applications 
that have intercommunicating tasks is presented. This algorithm has considered applications request 
encompassing one or more VMs for placement rather than individual VM, a practice conventionally 
used. Using placement knowledge of earlier tasks belonging to the current request, it has been 
shown that AIATP can place all the intercommunicating tasks onto same PM and/or on to network 
neighborhood PMs, thereby resulting in increased application performance by reducing the network 
latency between these tasks. The proposed AIATP has been employed as an extension to the scheduling 
polices of CloudSimPlus simulator and evaluated for metrics such as PM utilization, fragmentation, 
migrations and balanced PMs. It is to be noted that the reduced value for fragmentation and migrations 
along with increased value for PM utilization implies, increased operational efficiency for DC. 
Experimental results have demonstrated that AIATP outperforms other considered algorithms namely, 
FFD, FFI and FCFS for the identified metrics. It has been shown that use of AIATP gives increased 
application performance for users and also reduces the operational costs of CSPs.

The effect of AIATP on DC power consumption, analysis of various security issues related to 
placement of tasks and challenges related to integration of latest technologies like Internet of Things 
(IoT) and Fog/Edge computing with the cloud are of interest for future study.
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