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ABSTRACT

Designing security mechanisms for cloud computing infrastructures has assumed importance with the 
widespread adoption of public clouds. Virtualization security is a crucial component of the overall 
cloud infrastructure security. In this article, the authors employ the concept of Bayesian networks and 
attack graphs to carry out sensitivity analysis on the different components involved in virtualization 
security for infrastructure as a service (IaaS) cloud infrastructures. They evaluate the Bayesian attack 
graph (BAG) for the IaaS model to reveal the sensitive regions and thus help the administrators to 
secure the high risk components in the stack. They present a formal definition of the sensitivity 
analysis and then evaluate using the BAG model for IaaS stack. The model and analysis presented 
here can also be used by security analysts and designers to make a selection of the security solutions 
based on the risk profile of vulnerable nodes and the corresponding cost involved in adding a defense 
against the identified vulnerabilities.
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INTROdUCTION

IaaS (Infrastructure as a Service) has become a prominent service delivery model of modern day cloud 
infrastructures. Many businesses, especially the MSMEs (Micro, Small and Medium Enterprises) have 
adopted to use these services from public service providers for their business needs. Virtualization is 
the key technology enabler behind these massive public cloud infrastructures that can offer commodity 
virtual servers for business clients over the internet.

However security tops the areas of concern among the users of the cloud services. The inherent 
nature of virtualization which makes it possible for multiple tenants to share the same physical hardware, 
brings in a host of challenges related to VM isolation. This would also raise data confidentiality and 
privacy concerns. In addition to these new security threats unique to virtualized platforms, the cloud 
infrastructures are also susceptible to the traditional attacks on cyber infrastructures in the Internet 
world. Thus addressing security in cloud infrastructures becomes a challenge.

In this paper, we present a model for analyzing security threats unique to IaaS virtualized 
environments. Based on the concept of Bayesian networks, we formulate the threats with the help of 
an attack graph. Using the principles of sensitivity analysis, we demonstrate the usage of this model 
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to analyze the impact of various threats and thus implement an optimal security defenses against 
these threats.

Security analysis is challenging, as the analysts have to deal with the inherent uncertainty with 
the attack process. The success rate of the attacks varies significantly depending on various factors 
including the actual targeted setup, the components involved, the strategies employed and the prior 
defense mechanisms put in place in the infrastructure. A great deal of uncertainty exists regarding 
the attacker behavior. There are also variations among the different vulnerabilities listed at the 
corresponding layers. Thus a probabilistic model presents a best approach to capture this inherent 
uncertainty and carry out analysis to design the security framework for large, critical infrastructures. 
Bayesian approach can be used effectively to carry out probabilistic reasoning and draw inferences 
for hypothetical scenarios.

An attack graph is a graphical representation of the security threats in a system with nodes 
representing the system components and the edges representing the vulnerabilities / the exploits that 
can be used to reach a specific node. Bayesian Attack Graphs (BAG) are an extension of the attack 
graphs that employ the Bayesian approach to model the identified security threats in an infrastructure 
and to draw statistical inferences to various queries, such as the probabilities of attackers reaching 
particular security conditions by exploiting specific vulnerabilities. The model can also be used to 
set evidences of particular security violations hypothetically and then evaluate the probable 
explanations for the same. Specifically, consider an attack graph with n nodes. Let us consider 
X wherei n
i
� � ,= …1 , which indicates one of the nodes of the attack graph under consideration. If 

X
i
  represents a particular system component or a specific security condition of the system, then the 

BAG can be used to calculate the unconditional probability distribution p
i
Χ( ) , which indicates the 

probability of that particular component getting compromised or the probability of reaching a particular 
security violation state.

Owing to the transitive nature of the virtual machines in a cloud infrastructure, it becomes 
difficult to impart security fixes to all the reported vulnerabilities across all the components present 
in the stack. Hence prioritizing the security patches becomes a critical step to identify the crucial 
components and patches that have to be applied, to bring in a steady state of security to the system. 
This process necessitates identifying and quantifying the risk exposure of all the components involved 
in the setup. Sensitivity analysis (SA) on the model can thus be used to prioritize the threats and 
hence incorporate important defenses in the infrastructure on a priority basis. It can also lead to a 
better return on investment to the service providers, resulting from the optimized selection of security 
components to be procured and installed for the resources. The discussion presented in this article helps 
in achieving this task for IaaS cloud infrastructures. We have used Bayesian attack graphs to depict 
the attack paths and present a probabilistic model for performing inferences, based on the practical 
vulnerability scores of the exploits. We demonstrate that sensitivity analysis can be performed on 
the presented model for multiple scenarios.

The contributions in this paper are unique and useful, because of the following aspects. To the best 
of our knowledge, security design in virtualized infrastructures has not been analyzed using the concept 
of sensitivity analysis. While BAGs have been discussed in the context of analyzing conventional 
network and cyber infrastructures, they have not been employed for analyzing virtualization security 
in specific. Virtualization brings in new classes of threats that are unique only to such virtualized 
environments, as detailed in Asvija, Eswari, & Bijoy (2019) and Pék, Buttyán, & Bencsáth (2013). 
Hence a separate analysis is required to study and analyze the impact of these threats on the overall 
infrastructure. This paper presents such a model, based on the actually reported threats against different 
virtualization components. The presented BAG model is drawn by enumerating the reported threats, 
against the impacted virtualization component(s), which are represented as nodes in the BAG. The 
exploitability of these threats, to compromise particular components of the virtualization stack, has 
been modeled using the conditional probabilities that are assigned at each of these nodes. These values 
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have been derived based on the severity metrics of the reported threats. The model can be readily 
employed by security designers for risk assessment, inferencing, SA and other analytical studies on 
real-world virtualized infrastructures.

The paper discusses in detail on how SA can be efficiently used for analyzing the security threats 
in the context of virtualized infrastructures. We have provided illustrative scenarios of using the SA on 
the presented BAG model. Given a particular component of interest in the infrastructure, sensitivity 
tornado plots can help the security analysts to identify the most influential nodes on this component. 
Thus it can be used in designing the defense mechanisms for securing individual critical components 
in the infrastructure. Further, we have demonstrated the usage of SA, by setting hypothetical evidences 
on different components / nodes in the infrastructure and study their impact at both local and global 
levels. This study can be used to assess the impact of a particular security condition, on the other 
components in the infrastructure. It can also be used to study the change in the probabilities at a 
particular node, based on different hypothetical evidences. As another illustrative use of SA, we have 
demonstrated its employability, to identify the possible range of probabilities at a particular node 
that can lead to a desired target condition. This task is an extension of statistical inference, which 
will be useful for inferring the possible exploits and their success rates for meeting the conditions 
of a particular security breach. We have also demonstrated the usage of SA to identify the amount 
of changes required in the parameters of select components, to satisfy a particular constraint. This 
study will be useful in scenarios wherein the administrators are presented with a security condition 
of interest, and the goal of the experiment will be to find the amount of flexibility they have in 
altering with the defense systems at each of the components in the infrastructure. In this manner, the 
experiments conducted here demonstrate the employability of SA for a broad spectrum of security 
analysis tasks, specifically in the context of virtualized infrastructures.

Scope
IaaS infrastructures in general are susceptible to all the security threats that a conventional, physical, 
online cyber-infrastructure is vulnerable to. Security aspects at all the layers of these cyber-
infrastructures have to be taken into consideration, while designing security mechanisms. This includes 
a gamut of security measures ranging from physical security and access control mechanisms installed 
at the data-centers to handling the perimeter, network and host level security. In addition to these 
aspects, virtualized infrastructures introduce additional attack surfaces and hence family of threats 
that are unique and specific to this layer (Colp, et al., 2011) (Gill & Buyya, 2018). The OS level 
security, storage security and network security areas are well studied and data center administrators 
are in general, equipped with knowledge to harden these layers with appropriate defenses periodically 
(Modi & Acha, 2017). However the importance of virtualization security is often not fully understood 
by the data center administrators (Tsai, Siebenhaar, Miede, Huang, & Steinmetz, 2011). Further 
implementing virtualization security is also hard and challenging (Joseph & Mukesh, 2019).

Hence in this article we attempt to develop a framework based on the BAG, to model the security 
risks that are unique to the virtualization layer. The scope of this article is limited to analysis of the 
model, based on the specific, identified threats in the virtualization and hypervisor layers. The scope 
of carrying out sensitivity analysis is also limited to these components.

Organization of The Paper
The rest of the paper is organized as follows. The next section provides a critical analysis of the related 
work in the field of using the BAG for analyzing security risks and employing sensitivity analysis 
on BAGs. To provide a background of the virtualization stack, an introduction to IaaS virtualized 
environments is provided in the next section, along with a discussion on the IaaS security / threat 
model. The next section introduces the reader to the concepts of Bayesian networks and attack graphs 
for modelling security attacks. A discussion on carrying out Sensitivity analysis on the Bayesian 
networks is also presented here. The next section provides a reference Bayesian attack graph model 
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for IaaS environments and the conditional probabilities based on the reported attacks / vulnerabilities. 
Experimental results from carrying out sensitivity analysis on the model are presented in the last 
section.

RELATEd WORK

Bayesian Networks (BN) and attack graphs have been used to model security threats in cyber networks 
(Liu & Man, 2005). A mechanism to provide a network security metric, which is a combined function 
of all the vulnerabilities in the network has been presented by Noel, Jajodia, & Singhal (2007). Wang, 
Singhal, & Jajodia (2007) have introduced the idea of using combining functions to assess the overall 
impact of the vulnerabilities in the network. The concept of modeling uncertainty with the number 
of attackers likely to exploit a given vulnerability in a network, has been introduced by Wang, Islam, 
Long, Singhal, & Jajodia ( 2008).

A number of authors have discussed on inference techniques in Bayesian attack graphs. Table 
1 summarizes the related work in the field of inferences in BAGs and using Sensitivity analysis in 
them. Both approximate and exact inference techniques and various algorithms have been discussed in 
detail (Munoz-Gonzalez, Sgandurra, Paudice, & Lupu, 2017; Munoz-González, Sgandurra, Barrere, 
& Lupu, 2017). The concept of using Genetic Algorithms (GA) for security analysis in BAGs has 
been introduced by Poolsappasit, Dewri, & Ray (2012).

Sensitivity analysis in general, is a useful approach in identifying important uncertain factors 
in many real world scenarios. They have been employed to study models from multiple scientific 
domains including environmental (Razavi & Gupta, 2019) and hydrological modelling (Li, et al., 
2019), chemical engineering (Xie, Schenkendorf, & Krewer, 2019) and many other fields (Marchioni 
& Magni, 2018; Salim, Ioannidis, Penlidis, & Górecki, 2019). Sensitivity analysis using Bayesian 
Networks has been discussed by Chan & Darwiche, (2004) and Laskey (1995).

Although not through the means of Sensitivity analysis, the concept of identifying critical nodes 
in the attack graph and thus allowing a subset of defenses to be implemented by the administrators, 
has been introduced by Dewri, Poolsappasit, Ray, & Whitley (2007) and Poolsappasit, Dewri, & 
Ray (2012). The authors introduce new cost metrics and formulate the scenario as a multi objective 
optimization problem, thereby employing GA for solving it.

The use of BAGs for modeling threats in virtualized systems has been presented by us in (Asvija, 
Eswari, & Bjioy, 2019). We build upon these principles to present a concrete model for IaaS and 
employ sensitivity analysis to measure the impact of small changes in the parameters on the identified 
target probabilities.

Our Contribution
The main contributions of this article are as follows:

We use the concept of Bayesian Networks to model and carry out sensitivity analysis on the 
security in virtualized platforms. Virtualization security has become an area of prime importance, 
as it forms the core technology enabling modern day cloud computing infrastructures. We use the 
concept of Bayesian Networks to build the attack graph for virtualized platforms and carry out a 
detailed sensitivity analysis on the various components of the IaaS virtualization stack. To the best of 
our knowledge, our work pioneers in carrying out a sensitivity analysis on IaaS virtualization security 
components, that can be extremely useful for security architects to evaluate their infrastructures.

The approaches described in works (Munoz-Gonzalez, Sgandurra, Paudice, & Lupu, 2017; 
Munoz-González, Sgandurra, Barrere, & Lupu, 2017; Poolsappasit, Dewri, & Ray, 2012) are 
generic in discussion with analysis carried out on example networks or test networks. However the 
vulnerabilities considered in this article, to derive the local conditional probability values and to 
carry out the sensitivity analysis on the model, are specific to the IaaS virtualization stack, and thus 
have a greater practical significance.
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We present a practical model that has been created using the BN modeling software, which can 
be directly employed by system administrators for carrying out risk analysis of IaaS platforms. The 
local conditional probability values used in the analysis are derived from practical vulnerabilities listed 
in the National Vulnerability Database (NIST, 2018). Multiple sensitivity coefficients and indices 
have been explained and experimented, which can give cloud architects a better insight in selecting 
the hardening measures with the available constrained budget for implementing them.

Further, models based on static analysis and deterministic approaches such as the ones described 
in (Dewri, Poolsappasit, Ray, & Whitley, 2007; Idika & Bhargava, 2012; Noel & Jajodia, 2014), 
ignore the dynamic aspects of the attack process. The uncertainty inherent with the security attacks, 
calls for the employment of a dynamic model which can be revised based on new inputs and changes 
in the behavior. The BAG model presented here can be fed with new incident data and evidences. 
These can be used to carry out fresh analysis to obtain new set of results.

Table 1. Comparison of related work on BAG and Sensitivity analysis

Research work Feature Remarks

Munoz-Gonzalez, Sgandurra, 
Paudice, & Lupu, 2017 ; Munoz-
González, Sgandurra, Barrere, & 
Lupu, 2017

Employing exact inference 
techniques to analyze BAGs.

The approach is generic in discussion with 
example networks and authors do not take into 
the account of specific threats of virtualized 
infrastructures. No discussion on Sensitivity 
analysis.

Noel & Jajodia, 2014 Proposed a suite of 
deterministic metrics for 
analyzing network attack 
graphs.

The presented metrics are well suited for 
carrying out a comparative analysis of 
different attack graphs. They might not be 
effective for carrying out risk analysis of a 
single network that is under consideration. 
Further uncertainty is not taken care as 
probabilistic models are not employed.

Dewri, Poolsappasit, Ray, & Whitley 
(2007); Poolsappasit, Dewri, & Ray 
(2012)

Propose a method for 
identifying critical nodes in 
a graph

SA is not employed. Scenario is modeled 
as a multi-objective optimization problem 
and Genetic algorithms (GA) are employed 
for solving them. No discussion on specific 
threats of virtualized infrastructures.

Razavi & Gupta, 2019; Li, et al., 
2019; Xie, Schenkendorf, & Krewer, 
2019; Marchioni & Magni, 2018; 
Salim, Ioannidis, Penlidis, & Górecki, 
2019

Sensitivity analysis used in 
multiple scientific domains

These works discuss the usage and suitability 
of SA in multiple scientific domains. However 
they do not discuss SA in the context of 
Bayesian approaches and virtualization 
security.

Laskey, 1995 Sensitivity analysis in 
Bayesian Networks (BN)

Introduces a method of computing 
Sensitivity values in BNs. Seminal work 
in this area presenting general analytical 
methods to determine sensitivity values. 
However it presents no specific details on 
analyzing attack graphs or in the context of 
virtualization security.

Chan & Darwiche, 2004 Sensitivity analysis in 
Bayesian Networks

Provides a good overview of analytical 
approaches to carry out SA in BNs for single 
& multiple parameter changes. Authors also 
present a method to identify the weakest 
uncertain evidence. However the discussion is 
presented with example networks and authors 
do not consider modeling security or specific 
threats of virtualized infrastructures.
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IAAS VIRTUALIZEd ENVIRONMENTS

IaaS is a popular service delivery model in the cloud computing paradigm, in which the service 
providers offer computing and storage resources as services to be used by the end users for their 
business needs. These infrastructures rely on platform virtualization technology to offer virtual 
machines (VM) as services to the end users. Figure 1. depicts the components of a typical IaaS stack. 
Virtualization facilitates the creation of a logical view of a virtual machine that can encapsulate virtual 
hardware resources such as the virtual CPU (vCPU), virtual memory (vMem) and virtual disk (vDisk) 
along with an operating system (OS) to make them functional. The technology relies on sharing the 
underlying physical hardware among multiple tenant VMs. The physical machine facilitating this 
model is called as a host machine, while the VMs are referred to as the guest machines. The OS on 
the physical hardware is referred to as the Host OS, while the individual VMs run their own guest 
OS. The software component that facilitates the creation and management of the virtual machines is 
called the hypervisor. A typical large IaaS infrastructure, has multiple host machines pooled together, 
each running with its own hypervisor and capable of hosting multiple VMs. The cloud middleware is 
a software component that facilitates the co-ordination and management of multiple hosts, network 
and storage resources in the cloud setup. A management server, is typically setup to perform the 
administration tasks with the help of the cloud middleware. An image repository is a storage service 
which hosts the image files, that can be used by the end users to select their choice of guest OS and 
applications to execute on their own VMs.

IAAS Security
A benign user of the IaaS services from the cloud is granted access only to the VMs created / owned 
by him. Typically the virtualization technology is expected to guarantee full isolation among multiple 
tenants that share the same underlying hardware. However a break-in to the isolation among the VMs 
can result in a severe security compromise and data breach, as each co-hosted VM can be owned by 
different end users of the cloud services. We introduce the general threat model in this section. A 
detailed account of the individual attacks at various surfaces is further given in the section detailing 
the BAG and local CP values for IaaS virtualized environments.

Figure 2. depicts the threat model for attacks on VMs in a typical IaaS setup. The figure captures 
the possible attacks on the VMs during its lifetime in the infrastructure. Cloud platforms allow the end 
users to create and destroy virtual instances of resources easily. Compromised hosts and network nodes 
can be used for distributed denial of service and Botnet attacks on the infrastructure. A3 represents 
the attacks that could be arising out of modification / tampering of the virtual machine images and 
infecting them with Trojans. A4 represents attacks on data at rest, specifically on the image storages. 
A1 and A2 are the attacks that can be instrumented on the virtual resources at runtime. These attacks 
reveal confidential information to the attacker from a co-resident VM and this leakage cannot be 
eliminated by deploying access control policies. A5 and A6 represent the family of attacks where 
an under-privileged VM can gain access to the privileged kernel space or I/O space maliciously. A 
detailed enumeration of the reported attacks against each of these identified threat families is presented 
in the following sections.

It is thus evident from the above model, that IaaS virtualized environments expose multiple 
surfaces through which attackers can cause a security violation. Hence, the task of analyzing the IaaS 
security model becomes extremely important. We introduce the approach of threat assessment and 
sensitivity analysis using the Bayesian Networks and attack graphs in the next section.

BAyESIAN NETWORKS ANd ATTACK GRAPH MOdELLING

Bayesian Networks (BN) can be employed to model and analyze uncertainty in systems. They can 
be denoted as graphical representations comprising of nodes and directed edges, with the nodes 
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Figure 1. Components of the IaaS stack

Figure 2. Threat model for attacks on VMs in IaaS setup
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signifying the random variables in the system and the edges representing the conditions / correlations 
between them. The edges in the graph are directed in such a way that they do not result in cycles 
(Xie, Li, Ou, Liu, & Levy, 2010).

To define a BN formally, the network is a pair G,˜ . G  represents the graph component that 
comprises of a set of nodes/vertices V  and a set of directed edges E . Each vertex in the set V  
represents a random variable in the modeled system, while a directed edge indicates the conditionality 
between the vertices. An edge e  from a vertex v

1
 to v

2
 in a BN indicates the occurrence of v

2
 given 

the condition v
1

. Each variable in the network is independent of its non-descendants, with the state 
of its parent variables given (Friedman, Geiger, & Goldszmidt, 1997). ˜  in the pair G,˜ , denotes 
the set of quantifying parameters for the BN.

Let X  represent a vector of random variables involved in the network: X X X X
n

= …{ , , . }
1 2

. 
The uppercase letter X

i
 shall be used to denote a random variable from this vector, while the lowercase 

letter x
i
 is used to indicate a value to this variable. Let PA

Xi
 denote the set of parents of X

i
. For 

the root nodes in the graph, PA
Xi

 is an empty set. Given the particular values for PA
Xi

, p X PA
i Xi
|( )  

is the local conditional distribution for the random variable X
i
. ˜  contains the parameters:

θ
x PA i x i i x Xi xi i i i

p x PA x X and PA PA
|

,= ( ) ∀ ∈ ∀ ∈|  (1)

The joint probability for the Bayesian Network is thus defined as a product of these p X PA
i Xi
|( ) .

p p X PA
n

i

n

i Xi
Χ Χ Χ
1 2

1

, , , (� � � � | )…( ) =
=
∏  (2)

Bayesian Attack Graph (BAG) can be interpreted as the notion of extending the concept of 
Bayesian Networks to depict the security attack scenarios on a network / infrastructure. Each node 
in the attack graph represents the network nodes or the components involved in the infrastructure, 
while the edges represent the vulnerability or the exploit to carry out the designated attack. The nodes 
can also depict security states of an infrastructure under consideration. Different vulnerabilities / 
exploits and the resulting violations can be modeled through the attack paths in the graph. Using 
the graph, one can also visually identify the possible attack paths in the system to reach a possible 
security violation condition. Conditional probabilities shall be assigned at every node indicating the 
probability of the attack or using the exploit, given the conditions depicted as parent nodes in the 
graph. The probability distribution function at the individual nodes can be defined based on two 
approaches. The AND decomposition in which each individual exploit has to be successful to result 
in compromising a child node, while the OR decomposition stipulates that any of the exploit from the 
parent to the child can be sufficient to compromise the targeted child node. System administrators and 
security professionals with wide expertise in the field can make the decisions to employ either of the 
schemes while modeling the infrastructure. The formal definition (Poolsappasit, Dewri, & Ray, 2012) 
of the local conditional probability distribution function for the AND scheme can be given as follows:

p x PA

X PA X

i x

i X i

i

i

|( ) =
∃ ∈ =

�

��������� ,��������������� ���� |���0 0��������������

,����������������
.

p e oth
X

i

i =











1
∩ eerwise











 (3)
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The product rule can be used to compute the probability in this case. For the OR decomposition, 
p x PA

i xi
|( )  can be defined as follows (Poolsappasit, Dewri, & Ray, 2012):

p x PA

X PA X

i x

i X i

i

i

|( ) =
∀ ∈ =

�

��������� ,��������������� ���� ,���0 0��������������

,����������������
.

p e oth
X

i

i =











1
∪ eerwise











 (4)

It is also shown that (Liu & Man, 2005) for the OR decomposition, the joint probability is given 
by the noisy-OR operator as defined as below:

p e p e
X

i
X

i

i i. .= =












= − − ( )



∏

1 1

1 1∪ � � (5)

Sensitivity Analysis
Sensitivity Analysis (SA) can be used to identify how sensitive the changes in probabilities of the query 
nodes are to the change in parameters (Pollino, Woodberry, Nicholson, Korb, & Hart, 2007). It can 
also reveal the degree of relationship between the local parameters and the global conclusions in the 
model (Chan & Darwiche, 2004). Relevant parameters to a specific query can be identified with SA.

Sensitivity co-efficients are employed to quantify the change in the output ω , for a given change 
” ρ  in the input ρ . The sensitivity index ζρω  can be defined as (Loucks & Beek, 2005):

ζ
ω ρ ρ ω ρ ρ

ρρω =
+( )− −( ){ }0 0

2

” ”

”

� �
 (6)

where ρ
0

 represents the base value of ρ and the output ω  is a function of the input ρ . If we allow 
the variations to ρ

0
 on the negative and positive sides to be represented by i  and j  respectively, 

then we can define ζρω  as follows:

ζ
ω ω ρ ρ ω ω ρ ρ

ρω =
− −( ) + − −( ){ }( ) / | ( ) / |

0 0 0 0

2

i i j j
 (7)

Or

ζ ω ω ρ ρ ω ω ρ ρρω = − −( ) + − −( )max{( ) / | ( ) / |}
0 0 0 0i i j j

 (8)

Sensitivity Analysis In Bayesian Networks
Sensitivity analysis can be carried out with multiple methods. A simple and intuitive method involves 
identifying suitable ranges for every parameter in the model. Then the parameters for a chosen 
variable can be modified from the lowest to the highest identified range value, by keeping the values 
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for the other variables unchanged. The resulting impact on the target variable can be recorded. In 
another method, partial derivatives of the target variable can be computed with respect to each of the 
parameters. It has been shown that (Laskey, 1995), this method is particularly advantageous in case 
of Bayesian networks and can also be used to identify the variables that can cause significant impact.

Consider a Bayesian Network that characterizes a probability distribution p  and having a variable 
represented by a node X

i
 with its parent nodes PA

Xi
. Let θ

x PAi xi
|

indicate a parameter in the conditional 

probability table of X
i
, where X

i
 represents the random variable itself and x

i
 represents a value 

to this variable. The sum of the conditional probabilities at a given node should be equal to a value 
of 1. Thus any modifications to the value of p x PA

i xi
( | )  effected by the change θ

x PAi xi
|

, will result 

in a corresponding change in the conditional probabilities p x PA
i xi
( | ) , for all x x

i i
  ≠ . The function 

that assigns these probabilities according to the above rule is said to be a variation function. If the 
change θ

x PAi xi
|

is added to p x PA
i xi
( | ) , then a corresponding value is reduced from p x PA

i xi
( | )  for 

every x x
i i
  ≠ , to keep the sum of the conditional probabilities at the given node equal to a value of 

1. Thus the new probabilities can be represented as follows:

p x PA p x PA
New i x Old i xi i
( | ) ( | )= + θ

x PAi xi
|

 (9)

p x PA p x PA
p x PA

New i x Old i x

x PA Old i x

i i

i xi i( | ) (
(

|
= +

−
| )

| )θ

1 �� ( �p x PA
Old i xi

| )
 (10)

SA can reveal the impact on the joint probability distribution p X x
New
( |τ ε, )¸  to the corresponding 

changes in parameter θ, where ( |X xτ ε)  represents the condition of a target variable Xτ , when given 
with the evidence xε . If θ

λxi 

  
represents the λ th element in the parameter vector for the random 

variable X
i
, then the sensitivity value can be defined as follows (Laskey, 1995):

SI
p x x

i
New
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If E X( )  represents the expected value of the random variable X , then Laskey (1995) has shown 
that the partial derivative to be as follows:
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where:
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One of the goals of carrying out sensitivity analysis on Bayesian networks is to identify all the 
changes to θ

x PAi xi
|

, which will result in satisfying the query constraint p z e p
N
�|�( ) ≥ , where z  is 

some event given the evidence e  with p
New

 representing the new probability distribution after making 
the changes to θ

x PAi xi
|

. Let p
Old

 represent the old distribution before applying the changes and the 

assumption that p
Old

 and p
New

 are over the same set of worlds W . The goal is to narrow down on 
the changes which will result in a minimal value for the distance measure between p

Old
 and p

New
. 

The distance measure itself is given by the following equation (Chan & Darwiche, 2005):
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Using the measure S p p
Old New

,( ) , one can infer the bounds on the amount of change in the value 
from p
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 to p
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 for the query of the form q q
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In order to reduce the variation on the global changes as a result of the modifications in local 
parameters, one can attempt to minimize S p p

Old New
,( )  (Chan & Darwiche, 2005).

BAG ANd LOCAL CP VALUES FOR IAAS VIRTUALIZEd PLATFORMS

Threat Actors and Attacks
We consider three types of threat actors in our discussion of security threats to the IaaS environments. 
A malicious guest user (MGU) is a subscriber of cloud services who intends to carry out malicious 
activities on the infrastructure. A remote attacker (RA) is an outsider who does not hold valid access 
credentials in the cloud, and is attempting to break-in to the infrastructure. A malicious administrator 
(MA) is an insider to the cloud infrastructure, who has turned malicious to compromise the setup.

A detailed survey of the publicly reported attacks by these various threat actors is presented by 
Asvija, Eswari, & Bjioy (2019) and Pék, Buttyán, & Bencsáth (2013). A remote attacker can trigger 
virtualization detection attacks (Rutkowska J. , 2004; Brengel et al., 2016) to identify if the targeted 
resources run a set of vulnerable software components. These vulnerabilities in the hypervisor or the 
applications deployed in VM can be used by the attacker to gain a privilege access to the infrastructure 
(Geffner, 2015; NIST, 2018). A malicious guest user can obtain escalated privileges by exploiting 
the vulnerabilities in the system firmware (Gorobets et al., 2015; Kallenberg et al., 2014). Further 
MGUs can construct covert side channels that can reveal sensitive information between co-resident 
VMs. This is can result in a serious data theft and DoS attacks on the cloud (Inci et al., 2016; Yarom 
& Falkner, 2014). As an insider, a malicious admin can have direct access to the hosts. A planted 
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VM based rootkit (Desnos, Filiol, & Lefou, 2011), can compromise the hypervisor and all the VMs 
hosted in the machine. Firmware attacks can also result in the hypervisor and thus multiple tenants 
in a compromised state (Gorobets et al., 2015).

Reference BAG Model For IAAS Attacks
Bayesian Attack Graphs can be used to carry out security assessment of large infrastructures such as 
public and private cloud computing platforms that leverage virtualization technologies. The reference 
model graph for virtualized platforms, introduced by Asvija, Eswari, & Bjioy (2019), can be used 
for carrying out a detailed sensitivity analysis. The model, as shown in Figure 3, has been developed 
based on the publicly reported attacks on the various components of the hypervisor and virtualization 
stack for the IaaS. The vulnerabilities which have been marked as either Critical or High are considered. 
The nodes of the graph represent the state of the components of the virtualization stack that can get 
compromised due to an attack on the infrastructure, while the edges represent the attack families 
themselves. Figure 4. displays the Conditional Probability (CP) values assigned at each of the nodes 
in the BAG. The method used to derive the CP values is based on the vulnerability scores from the 
NIST’s Common Vulnerability Scoring System (CVSS) (Mell, Scarfone, & Romanosky, 2007), as 
suggested by (Poolsappasit, Dewri, & Ray, 2012). Munoz-Gonzalez et al. (2017) have shown that 
the exploitability metric is more suitable to derive the CP values in a BAG, as it gives a direct measure 
of the ease with which the attack can be carried out to compromise a component in the infrastructure. 
We have enlisted the reported severe and critical vulnerabilities against these attack surfaces in the 
virtualization stack from the National Vulnerability Database (NVD). The identified vulnerabilities 
with their CVE identifiers and the CVSS scores have been enlisted in the Appendix section of this 
article. The corresponding CVSS scores are used to derive the CP values at the individual nodes of 
the BAG. As shown in (Poolsappasit, Dewri, & Ray, 2012), the exploitability score has the components 
of the attack access vector A

av
, access complexity A

ac
 and authentication instances A

ai
. With these 

values available for a vulnerability v , the probability value has been computed as follows:

p v A A A
av ac ai( ) = 2 � �  (16)

EXPERIMENTAL RESULTS

The Bayesian Network has been modeled using two tools namely the UCLA Senstivity Analysis, 
Modeling, Inference and More (SamIam) (Darwiche, et al., 2017), and the GeNIe modeler 
(BayesFusion, L. L. C., 2017). The model was created and experiments were carried out on a system 
with Intel Xeon E3 family 1226 version 3 (3.3 GHz) CPU having 16 gigabytes of main memory with 
Windows 10 OS and Oracle JRE 1.8. The GeNIe 32 bit Academic version was used from BayesFusion 
with version 2.4.4519.0.

Sensitivity analysis can reveal the impact on the various sub components of the stack, when subject 
to a security incident. To illustrate this, we used the model presented here to carry out sensitivity 
analysis using the GeNIe modeler on the node labeled Chipset_Compromised (CC). Figure 5 depicts 
the tornado plot for sensitivity values for the target condition CC=true. Sensitivity tornado plots can 
reveal the extent of impact of other components in the BAG, on a particular chosen node. The plots 
demonstrate the sensitivity values for the various nodes in the BAG, in the decreasing order of their 
impact on the target node of interest. These plots can also give an indication of the impact of the 
specific vulnerabilities at a given BAG node. Such a plot can be used while prioritizing the defense 
mechanisms for individual critical components or for preventing specific classes of security breaches 
in the infrastructure. With Figure 5, one can conclude that the most sensitive node for the current target 
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condition is the HOC. Thus the exploitability / defense at the HOC node, has the highest impact on 
the CC node. The next sensitive node is the Malicious Admin (MA) node. This can be attributed to 
the large family of chipset attacks can be carried out by a malicious admin as an insider. The other 
sensitive nodes include the hypervisor compromised state pointing to the presence of VM based 
Rootkits (Desnos, Filiol, & Lefou, 2011) and attacks on hypervisors through firmware (Gorobets et 
al., 2015). The malicious guest user (MGU) node also figures in the sensitivity diagram, indicating 
the possibility of VM escaping attacks resulting in compromised secure boot process of the system 
(Kallenberg et al, 2014).

Figure 6. shows another illustration of the sensitivity tornado plot for the target condition IO 
Compromised = true. The current value for the target condition is 0.51. The most sensitive nodes for 
this condition are the Host OS Compromised (HOC) and the CC nodes, indicating the criticality of IO 
attacks through these channels (Pék et al., 2014; Richter et al. 2014). The Hypervisor Compromised 
(HYC) node also appears as sensitive, owing to the critical hypervisor vulnerabilities such as the 
VENOM (Geffner, 2015), which could be exploited to target IO channels in virtualized systems. In 
this manner, the presented model can be used for identifying the most sensitive nodes for a given 
target condition.

Figure 3. Threats in virtualized platforms modeled as a BAG
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Further, evidence variables can be set on the model, and the sensitivity analysis can be re-run to 
obtain the fresh results based on the set evidences. Hypothetical evidences can be set in the model to 
analyze their impacts on the parameters at different nodes in the BAG. Evidences can represent the 
assumption of a particular security breach occurring or a node getting compromised. The outcome 
of this exercise indicates the most sensitive set of parameters for a given evidence. In case of our 
BAG, it can highlight the combination of exploits / threats that can have significant impact on the 

Figure 4. CPT for the nodes in the BAG derived from CVSS exploitability metrics
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current state of a node, in the light of a given evidence. Figure 7 shows an illustrative case for the 
node MC. The graph captures the parameter values at the node with no initial evidence. Further it 
captures the parameter values after setting the evidence as DB=false in the BAG. We can notice the 
way the parameter values change with the new evidence being set. In this case, all the parameters 
depict changes for this evidence. However the parameters MGUFCCFMCT and MGUFCCFMCF display 
a higher variation, indicating the sensitiveness of these parameters to the given evidence. In this 
manner, security practitioners can set the evidences from actual breach scenarios and try to analyze 

Figure 5. Sensitivity tornado plot for Chipset_Compromised=true

Figure 6. Sensitivity tornado plot for IO Compromised =true
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the sensitive parameters for these evidences, which can help them to choose the security defenses to 
be installed for avoiding similar violations.

To approximate changes in the target probability, one can use the sensitivity values as shown by 
Laskey (1995). Using this approximation, we have experimented by varying the probabilities in the 
model by a factor of 0.2, for the condition Data Breach (DB) = true. If after the variation, the resulting 
value is greater than 1, then the probability is reset by subtracting the value from 1. The resultant 
approximations were recorded and plotted to compare the quality of the approximation. Figure 8 shows 
the quantile-quantile plot of the actual probability changes and the resulting approximate changes. 
As discussed by Laskey (1995), the linear approximation is a good fit for the results. We have also 

noticed that higher the probability difference, higher is the approximation error.
Sensitivity analysis can also be used to obtain the suggested modifications to parameters θ

x PAi xi
|

, 

which will result in satisfying the query constraint p z e p
New

�|�( ) ≥ , where z  is some event given 
the evidence e  with p

New
 representing the new probability distribution after making the changes to 

θ
x PAi xi

|
. To illustrate this, we have carried out an experiment, on the node IOC in the presented model. 

The results of this experiment are depicted in Figure 9. The existing CPT values for this node will 
result in p(false) = 0.49, which indicates a nearly 50% chance of this node getting compromised. We 
can carry out SA to identify the changes in the parameters required for specific constraints. As an 
illustration query, if we are interested to assign a new value pNew(false) = 0.2. The required changes 
in the parameters to achieve this constraint, can be found out using SA. Figure 9 depicts the 
corresponding changes required for various CPT combinations for satisfying this constraint. With 
such an analysis, one can find out the set of parameters that can have a greater influence on a specific 
node, for a given constraint.

Figure 7. Changes in the probabilities of MC node, for different evidences
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To extend the discussion further, we have carried out experiments that can show the amount of 
changes required, if the desired probabilities at a node are within a specific range. Results from the 
analysis on the presented model for an example query ( p IOC true and p IOC true=( ) ≥ =( ) ≤0 8 0 2. . ) 
have been shown in Table 2The values depicted here indicate the changes required in the local 
conditional probabilities for various combinations of the truth values of the parent nodes of IOC to 
satisfy the constraint. With this analysis, one can infer the impact of the local conditional probability 
changes of the identified nodes on the selected target with query constraints.

Figure 10 depicts the comparison of different parameter values for multiple constraints for the 
node DB. Here the existing CPT values for the node result in p DB false=( ) = 0 2138. . This indicates 
a relatively low probability of the data breach not occurring. Security administrators will be interested 
to identify the requirements to avoid a specific security violation condition. In this case, if we assume 
that we are interested to assign a relatively high value DB false=( ) = 0 9. . We can carry out SA to 
reveal the necessary changes required in the parameter values for this condition. Figure 9 depicts 
these suggested parameter values. Similarly, to study the impact of these parameter changes on the 
overa l l  node  probabi l i ty,  we  can  re - r un  the  SA wi th  a  d i f fe ren t  const ra in t 
DB false and DB false=( ) = =( ) =0 75 0 6. . . The results from these analyses have also been 

captured in the graph. We can see that parameter values such as ISCTIOCTMCF and ISCTIOCFMCT 
are displaying high variation with the existing values for satisfying the given constraints. With this, 
one can comparatively analyze the way the parameter values impact, for different constraint values 
at a given node. This will be useful in selecting the most sensitive parameters for achieving a specific 
constraint at the given node and thus select the optimal defenses for securing the corresponding 
component in the infrastructure.

Figure 8. Q-Q plot of the Actual and approximate changes in probabilities for DB=true
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Figure 9. Changes in the probabilities of IOC node, as suggested by SA for the constraint pNew<=0.2

Table 2. Changes in θ values suggested by Sensitivity Analysis for the queries p IOC andp IOC( ) ≥ ( ) ≤0 8 0 2. . )

Parameter Base Value Lower Bound Upper Bound

IOCTMGTHOCTCCT 0.708 0.328 0.920

IOCFMGTHOCTCCT 0.292 0.080 0.672

IOCTMGTHOCTCCF 0.583 0.219 0.869

IOCFMGTHOCTCCF 0.417 0.131 0.781

IOCTMGTHOCFCCT 0.419 0.127 0.774

IOCFMGTHOCFCCT 0.581 0.226 0.873

IOCTMGTHOCFCCF 0.267 0.068 0.633

IOCFMGTHOCFCCF 0.733 0.367 0.932

IOCTMGTHOCTCCT 0.583 0.219 0.869

IOCFMGTHOCTCCT 0.417 0.131 0.781

IOCTMGFHOCTCCF 0.541 0.191 0.848

IOCFMGFHOCTCCF 0.459 0.152 0.809

IOCTMGFHOCFCCT 0.378 0.109 0.742

IOCFMGFHOCFCCT 0.622 0.258 0.891

IOCTMGFHOCFCCF 0.137 0.031 0.430

IOCFMGFHOCFCCF 0.863 0.570 0.969
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CONCLUSION ANd FUTURE dIRECTIONS

We have presented the approach for carrying out sensitivity analysis on Bayesian attack graphs for 
IaaS virtualized environments. We have presented the theoretical concepts behind sensitivity analysis 
and ways to derive sensitivity indices using single parameter value changes. The approach described 
here provides a practical model base that can be used by cloud administrators and security architects, 
as the local conditional probabilities have been derived after a careful analysis of the publicly reported 
vulnerabilities in the various layers of the IaaS virtualization stack. Sensitivity analysis approach 
presented here will be beneficial for selecting the optimal set of security countermeasures to be 
implemented by categorizing them based on the severity of their impact. It can also be beneficial in 
doing cost analysis of the various security subsystems to be implemented in the IaaS infrastructures.

Further research in this direction can include the development of a dynamic framework, which 
can incorporate automated querying of the newly reported threats in the public databases and re-
model using the auto computed sensitivity values. Evidences from actual security breaches on 
cloud infrastructures and the specific vulnerabilities exploited to compromise them can be fed into 
the framework to obtain further realistic inferences from the model. The model can also consider 
incorporating approaches to perform SA using multiple parameter value changes. Research efforts 
are required to devise efficient techniques to perform these operations, as computing the partial 
derivatives in this case can become computationally intensive. To make the techniques computationally 
efficient, they have to be refined to find relevant parameters to check, instead of calculating for all 
the combinations of the parameter values in the CPTs, as presented in the current approach.

Figure 10. Comparison of changes in parameter values for the node DB, as suggested by SA for different constraints
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APPENdIX

Identified Vulnerabilities for deriving the CPT Values

Table 3. Critical and high vulnerabilities reported in commodity hypervisors during Jan 2016- Mar 2020 (Asvija, Eswari, & Bjioy, 
2019)

CVE ID Hypervisor Score Reason Possible attack type CWE categories 3 AV1 AC2

CVE-2017-
1000407

KVM 7.4 Allowing direct access to host I/O 
port 0x80

DoS, Host OS crash ICUEC A Low

CVE-2017-
12188

KVM 7.8 Improper traversal of guest page 
table entries

DoS, Host OS crash PT L High

CVE-2017-
12154

KVM 7.1 Improper access control on host 
CR8 register

Obtain sensitive 
information

IAC L Low

CVE-2017-2583 KVM 8.4 Improper Instruction emulation Guest OS crash, Gain 
guest OS privileges

PPAC L Low

CVE-2016-
10150

KVM 9.8 Vulnerability in ioctl_create_
device function

Host OS crash, Gain 
privileges

PPAC, UAF N Low

CVE-2017-2584 KVM 7.1 Instruction emulation for fxrstor, 
fxsave, sgdt, and sidt.

DoS, Obtain sensitive 
info from kernel 

memory

ILD, UAF L Low

CVE-2016-9777 KVM 7.8 Faulty bounds check for the 
VCPU index in I/O APIC mode

DoS, Gain host OS 
privileges

OOB - Read L High

CVE-2016-4440 KVM 7.8 Mishandling of the APICv on/
off state

DoS, Execute arbitrary 
code on the host OS

PPAC L Low

CVE-2016-3713 KVM 7.1 Improper handling of MTRR 
support

DoS, Obtain sensitive 
information

IAC L Low

CVE-2016-0749 KVM 9.8 Memory allocation flaw in SPICE 
remote display protocol

Execute arbitrary code, 
Buffer Overflow

BE N Low

CVE-2019-
14821

KVM 8.8 Bug in implementation of 
Coalesced MMIO write operation

DoS, Host OS crash, 
Gain privileges

OOB-Write L Low

CVE-2019-7221 KVM 7.8 Use after free bugs Obtain sensitive 
information

BE L Low

CVE-2018-
16882

KVM 8.8 Use after free bugs Obtain sensitive 
information

BE L Low

CVE-2018-7541 Xen 8.8 Inconsistencies in grant table 
transitions

DoS, Gain privileges PPAC L Low

CVE-2017-
17564

Xen 7.8 Incorrect error handling for 
memory page reference counts

DoS, Gain privileges EH L High

CVE-2017-
17563

Xen 7.8 Incorrect overflow check for 
memory page reference counts

DoS, Gain privileges BE L High

CVE-2017-
17045

Xen 8.8 Incorrect handling of Populate 
on Demand, Physical-to-Machine 

errors

DoS, Obtain sensitive 
info from kernel 
memory, Gain 

privileges

PPAC L Low

CVE-2017-
15597

Xen 9.1 Incorrect assumption in pin count 
/ page reference race in grant 

table code

Host OS crash, Gain 
privileges, DoS

PPAC N Low

CVE-2017-
15592

Xen 8.8 Mishandling of self linear shadow 
mappings

DoS, Gain privileges PPAC L Low

CVE-2017-
15590

Xen 8.8 Mishandling of MSI mapping DoS, Gain privileges PPAC L Low

CVE-2017-
14316

Xen 8.8 Out of bound access to an internal 
array

Execute arbitrary code OOB - Read L Low

CVE-2017-
12136

Xen 7.8 Race condition in the grant table 
code

DoS, Gain privileges RC L High

CVE-2017-
12135

Xen 8.8 Problems in handling transitive 
agents

DoS, Gain privileges PPAC L Low

CVE-2017-
12134

Xen 8.8 Errors in handling block I/O DoS, Obtain sensitive 
info from kernel 
memory, Gain 

privileges

PPAC L Low

CVE-2016-9637 Xen 7.5 Flaw in range check for ioport 
read/write operations

Gain host privilege PPAC L High

CVE-2016-
10013

Xen 7.8 Mishandling of SYSCALL single 
step during emulation

Gain guest OS 
privileges

PPAC L Low

CVE-2016-9381 Xen 7.5 Double fetch vulnerability – Race 
condition in QEMU

Gain host privilege PPAC, RC L High

CVE-2016-9386 Xen 7.8 Improper treatment of x86 NULL 
segments during memory access

Gain guest OS 
privileges

PPAC L Low

CVE-2016-9382 Xen 7.8 Mishandling x86 task switches to 
VM86 mode

Guest OS crash , Gain 
host privilege

PPAC L Low
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Table 4. Critical and high vulnerabilities reported in commodity hypervisors during Jan 2016- Mar 2020 (Asvija, Eswari, & Bjioy, 
2019)

CVE ID Hypervisor Score Reason Possible attack type CWE 
categories 3

AV1 AC2

CVE-2016-
7093

Xen 8.2 Mishandling of instruction 
pointer truncation during 

emulation

Gain host OS 
privileges

PPAC L Low

CVE-2019-
19578

Xen 8.8 Exploiting linear pagetables 
implementation by PV 

guests

DoS, Gain privileges IV L Low

CVE-2019-
19577

Xen 7.2 Exploiting pagetable height 
updates on AMD hosts with 

IOMMU

DoS, Memory leaks IV L Low

CVE-2019-
18425

Xen 9.8 Exploiting descriptor 
table limits in 32 bit PV 

emulations

Gain Privileges PPAC N Low

CVE-2017-
4941

ESXi 7.5 Vulnerability in handling 
VNC sessions

Execute remote code BE N High

CVE-2017-
4933

ESXi 7.5 Vulnerability in handling 
VNC sessions

Execute remote code BE N High

CVE-2017-
4924

ESXi   Out-of-bounds write 
vulnerability in SVGA 

device

Execute arbitrary code OOB - Write L Low

CVE-2016-
5330

ESXi 7.8 DLL side loading 
vulnerability

Gain Privileges USP L Low

CVE-2019-
5544

ESXi 9.8 Heap overwrite issue Gain Privileges OOB - Write N Low

CVE-2019-
5521

ESXi 9.6 Vulnerability in pixel shader DoS, Gain Privileges OOB – Read N Low

CVE-2017-
8714

Hyper-V 7.8 Improper validation of input 
from authenticated user

Execute remote code IV L High

CVE-2017-
8664

Hyper-V 8.8 Improper validation of input 
from privileged user

Execute remote code IV L Low

CVE-2017-
0212

Hyper-V 7.6 Improper validation of 
vSMB packets

Gain privileges PPAC A High

CVE-2017-
0181, 0180, 
0163, 0162

Hyper-V 7.6 Improper input validation in 
network switch

Execute remote code IV A High

CVE-2017-
0109

Hyper-V 7.6 Input Validation 
vulnerability in Hyper-V

Execute arbitrary code IV A High

CVE-2017-
0075

Hyper-V 7.6 Access control vulnerability Execute arbitrary code IAC A High

CVE-2017-
0021

Hyper-V 9.0 Improper validation of 
vSMB packets

Execute arbitrary code IAC A Low

CVE-2016-
0090

Hyper-V 7.1 Information disclosure 
vulnerability

Obtain sensitive 
information

ILD L Low

CVE-2016-
0088

Hyper-V 9.3 Remote Code Execution 
Vulnerability

Execute arbitrary code IAC L Low

CVE-2018-
8489

Hyper-V 8.4 Remote Code Execution 
Vulnerability

Execute arbitrary code IV N Low

CVE-2019-
0719

Hyper-V 9.1 Remote Code Execution 
Vulnerability

Execute arbitrary code IV N Low

CVE-2019-
0721

Hyper-V 9.1 Remote Code Execution 
Vulnerability

Execute arbitrary code IV N Low

1. AV = Attack Vector L = Local N = Network A = Adjacent Network 2. AC = Attack Complexity
3. CWE Categories: PPAC = Permissions, Privileges, and Access Control, UAF = Use After Free, ILD = Information Leak/Disclosure, OOB = Out of 

Bounds, IAC = Improper Access Control, BE = Buffer Errors, RC = Race Conditions, USP = Untrusted Search Path, IV = Input Validation, EH = Error 
Handling, ICUEC = Improper Check for Unusual or Exceptional Conditions, , PT = Path Traversal
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