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ABSTRACT

The exponential growth of the internet of things and united applications have renewed the scholarly 
world to grow progressively proficient routing strategies. Quality of service (QoS) and reduced 
power consumption are the major requirements for effective data transmission. The larger part of 
the applications nowadays including internet of things (IoT) communication request power effective 
and QoS-driven WSN configuration. In this paper, an exceptionally strong and effective evolutionary 
computing allied WSN routing convention is designed for QoS and power effectiveness. The proposed 
routing convention includes proficient capacity called network condition-based malicious node 
detection. It adventures or mines the dynamic node/network parameters to recognize malignant 
nodes. Experimentation is done using network simulator tool NS2. Results ensure that the proposed 
routing model accomplishes higher throughput, low energy utilization, and low delay that sustains 
its suitability for real-time WSN.
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1. INTRoDUCTIoN

The exponentially swift in wireless communication systems and associated applications have 
revitalize the research-industry to develop progressively capable and strong routing technique to fulfil 
growing demands. Contemporarily, the modern era of human lifestyle cannot be assumed without 
having communication system where each known and unknown intelligence will be utilized by every 
user to share information among multiple peers by making optimistic decision. There exist many 
applications include wireless sensor network components are military, Healthcare, Smart industries, 
spatio-temporal, smart agricultural, smart home, SCADA, smart city, etc (Azlan & Al-Anbuky, 
2015; Ehsan & Hamdaoui, 2012; Medeiros de Ara’ujo & Becker, 2011; Spachos et al., 2015). On 
the other hand, to increase the QoS communication requirement by providing timely, reliable, and 
power efficient communication among the several deployed nodes in the network area as there is a 
demand for significant development of network computing and dynamic decision-making applications. 
Machine-to-Machine (M2M) communication and Internet-of-Things (IoT) are two among the recently 
developed technologies which apply wireless communication protocols as a backbone network 
to provide real-time data transmission among nodes to provide ideal energetic decision making 
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(Ehsan & Hamdaoui, 2012). Its significances have expanded towards Big Data analytics, Industrial 
Interaction, Monitoring and Controlling, Enhanced Surveillance functions and so forth. To fulfill 
above stated requirements, distinctive network prototypes have been proposed, among which WSN 
is the overwhelming one.

WSN being a decentralized and infrastructure-less communication paradigm includes various 
sensor nodes distributed over the network that work agreeably to transmit detected data from 
source to the sink node in one or many hops. However, dynamic nature of the network and the node 
situations regularly impacts transmission effectively, compelling WSN to experience connection-
outage, congestion, packet drop and retransmission (Medeiros de Ara’ujo & Becker, 2011). Such 
challenges frequently result into more energy-dissipation causing network life-time degradation and 
QoS violence. On the other hand, Quality of Service and Quality of Experience (QoE) being the 
unavoidable requests of the traditional communication frameworks require WSN to guarantee ideal 
information transmission over the network. Along with QoS provision, WSN being battery operated 
network needs ideal routing mechanism to reduce packet loss and retransmission probability and the 
sub-sequent node death rate to hold maximum network lifetime (Ehsan & Hamdaoui, 2012)(Medeiros 
de Ara’ujo & Becker, 2011)(Sen & Ukil, 2009). Sensor nodes are very sensitive to the vulnerabilities 
and often deployed in some dangerous environments. These nodes can get failure due to the hardware 
problem of any damages or by draining the energy. In the wireless networks, the node failure will be 
more than one normally compared to the wired or infrastructure-based wireless network. There is a 
need for the routing protocol deployment which detects the failures as early as possible and efficient 
enough to handle a greater number of faults meanwhile managing all the network functionalities. So, 
the routing protocol should automatically select the alternate paths if there is a node or link failure 
in one path.

In traditional WSN either static network parameters are utilized for routing decisions or particular 
security models are used to recognize malevolent nodes to maintain a strategic distance from their 
quality in transmission path. In any case, these techniques as an independent solution cannot ensure 
optimal performance, particularly under dynamic network conditions and intelligent malevolent 
node presence. In the majority of the existing WSN routing protocols, authors have applied node 
parameters such as residual energy, packet drop per node, link quality, congestion probability, etc. 
to perform routing decisions. Interestingly, authors have used a single network condition parameter 
to make routing decisions. However, in contemporary network scenarios the presence of dynamic 
nodes and/or network conditions cannot be ignored, which eventually could influence the efficiency 
of the routing protocol. On the other hand, even a malevolent node can also impact overall network 
performance. Malevolent nodes can have sufficient (resembling) node parameters mimicking the 
genuine nodes, whose inclusion in the forwarding path can lead to packet drop, energy exhaustion, 
delay, loss of data, etc. Hence, in addition to the network condition aware routing decision, malevolent 
node identification and avoidance is a must to ensure QoS provision in wireless sensor networks. To 
achieve this, network mining concept can be vital where exploring different nodes as well as network 
parameters over the operating period can helps in identifying malevolent nodes to avoid it and making 
an optimal adaptive routing decision.

The remaining sections of the presented manuscript are divided as follows: Section II discusses 
related work, which is followed by research questions and problem formulation in Section III. Overall 
proposed system and its implementation is discussing in Section IV. Section V presents the simulation 
results and allied inferences, while overall conclusion is given in Section VI. References used in this 
research are given at the end of the manuscript.

2. BACKGRoUND

This part of the paper basically talks about some of the key writings pertaining to the focused 
research target of designing powerful anomaly identification mechanism for WSNs. Prominently, 
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the above-stated objective has been achieved in most of the existing approaches. Contrasting with 
these existing approaches we concentrate on the different network parameters on designing an ideal 
cohesive resolution to accomplish QoS as well as energy-efficiency requirements. Zhang et al (2019) 
concentrated on exploiting node validity and time-series analysis to be applied in urban network 
circumstances by identifying anomalies for improved routing decisions in dense WSN. Authors have 
implemented a Bayesian model to attain the status value for every partaking node which has been 
contrasted with a pre-defined threshold range to identify a node as malevolent or intruder. They are 
not concentrating on the delivery ratio and security tradeoffs in the network.

Kumar et al (2018) implemented a Bayesian Network model to calculate the conditional 
dependency among the participating nodes in the network to detect malevolent nodes. This system 
is not considering the dynamic nature of the wireless sensor network, it works efficiently for the 
static sensor network. Xu et al (2012) developed a combined support vector machine and K-Nearest 
neighbor (SVM-KNN) based approach to detect Malevolent in a wireless sensor network. The authors 
implemented KNN to get statistics among the adjacent nodes of the network, and SVM was used as 
a spatial-temporal classifier to identify the malevolent or outlier node. The authors also suggested 
that there exist other techniques that can reduce the data samples to detect the outliers still accurately.

Martins et al (2015) designed a multi-agent model for outlier detection in WSN. To accomplish it, 
the authors used the Least Squares SVM model to learn dynamic time-series network data to identify 
outlier nodes. Here authors designed a multi-agent hierarchical structure and the node if it is not an 
agent and if it is an outlier then it will not be detected properly. Liu et al (2013) designed an adaptive 
routing protocol based on knowledge-driven training, in this approach at first minimization concept 
was used to detect Malevolent, followed by this link-level context-aware rate adaptation model for 
making routing decisions is also designed. By this model overall 18% throughput was achieved. 
Erroneous data in the context information will be identified as an outlier.

Feng et al (2017) considered node’s credibility feedback to identify distributed malicious node 
in WSN. Authors used Bayesian-based reliability calculation to perform malicious node detection, it 
is good for traditional networks but too complex and suspicious for the dynamic network. Zhang et al 
(2010) developed an approach by considering network surveillance, unique message or fake message 
detection, and various spatial-temporal association and consistency. Here authors considered multiple 
parameters to identify malicious data.

Yessembayev et al (2018) too worked on distinguishing WSN nodes as good or bad based on 
altered or unreliable information transmitted by a malicious node. Here authors are not monitoring 
detected nodes in the network, and they mentioned a suggestion for concentrating on the reliability 
of the network to maintain after the bad node detection in the network. Abid et al (2017) applied a 
density-based spatial clustering approach for malicious node detection. And clustering is not only 
enough to provide more quality of services in the wireless sensor network. Paola et al (2015) developed 
an adaptive distributed Bayesian model for Outlier detection in WSN. The authors are concentrating 
on the data outliers and it is not sufficient for the optimal routing and to increase the energy efficiency. 
Rajasegarar et al (2010) developed centered Hyper-spherical and Hyper-ellipsoidal One-Class SVM 
for malicious node detection in a sensor network. The authors developed a one-class quarter-sphere 
SVM (QSSVM) that retrieves normal data vectors in a higher dimensional space for each participating 
node to perform anomaly detection. This model may be inefficient for the dynamic behavior of the 
sensor networks because the authors suggested enhancing it for different parameter adjustments.

Yang et al (2019) developed a graph rigidity concept for malicious node detection ad localization 
in WSN. Here, the authors applied inter-node distance information to perform malicious node 
detection; however, its efficacy for mobile-WSN seems to be limited. Recently, Zhang et al (2010) 
applied an artificial neural network algorithm to perform malicious node detection in WSN. This 
approach considers the temperature reading provided by a node to assess its reliability. However, its 
efficacy remains confined to smart home (indoor) purposes only. Wang et al (2016) developed an 
isolation-based outlier detection approach using nearest neighbor ensembles (iNNE). Their approach 
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exploited Spatio-temporal information obtained by nodes to perform outlier identification. Ghorbel 
et al (2018) developed a kernel principal component analysis (KPCA) to classify data as normal 
or malicious. The authors applied the KPCA-based Mahalanobis kernel to detect Malevolent in a 
sensor network. this work is concentrating on the identification of outliers in the training data and 
not suitable for more energy efficiency of the nodes.

For a selective forwarding attack, a malicious node detection algorithm based on a triangle module 
fusion operator (MDTMO) (Yessembayev, 2018) is suggested. After the base station node receives 
the warning information, the monitoring node will then alert the base station node, further verifying 
whether the packet loss is caused by network congestion or attack. If the network quality is good and 
there is no congestion, the node is described as a selective forwarding attack launched by a malicious 
node. Then the base station node sends an alert message, and the network isolates the malicious node.

A systematic literature review of current clone node identification schemes was proposed by 
Muhammad Numan et al (2020). In the remote and harsh environment, the deployment of WSNs 
enables the opponent to capture the valid node and collect stored credential information such as IDs 
that can be easily re-programmed and reproduced. This is the primary inspiration for researchers 
to design improved clone attack detection protocols. We have thus presented a systematic literature 
review of current clone node detection schemes in this paper.

The deep neural network (DNN) developed by Swarna Priya R M et al (2020) is used to build 
efficient and appropriate IDS in the IoMT setting to identify and anticipate unforeseen cyberattacks. 
The network element is preprocessed by hyperparameter selection methods, optimised and tuned. The 
benchmark intrusion detection dataset compares a detailed study of DNN experiments with several 
other machine learning algorithms. Moutaz Alazab et al (2020) designed an efficient classification 
model that combines permission requests and API calls. As many APIs are used by Android users, we 
suggest three distinct grouping strategies to pick the most useful API calls to increase the probability of 
Android malware apps being identified: the uncertain group, the dangerous group, and the destructive 
group. The findings indicate that malicious applications invoke a different collection of API calls 
compared to benign apps and that mobile malware frequently demands hazardous permissions more 
often than benign apps to access sensitive data.

In the existing methods, there are a lot of shortcomings like malicious node detected may be 
kept idle for some time then it can be removed from the network, energy consumption is more in 
identifying malicious nodes, more processing overhead, neglected traffic congestion, overhearing 
nature, reduced communication effectiveness etc. To overcome certain short comings, we are here 
designing a novel approach based on network conditions to detect malicious nodes in the wireless 
sensor network.

3. PRoBLeM STATeMeNT

In most of the current WSN routing protocols, authors have applied node parameters to make 
routing decisions, such as residual energy, packet drop per node, connection consistency, congestion 
probability, etc. Interestingly, the authors have used the single parameter of the network state to make 
routing decisions; On the other hand, even an interrupting node may also affect overall network 
output (say, malicious node or outlier node). Malicious nodes may have adequate (resembling) node 
parameters that resemble real nodes whose inclusion in the forwarding path can lead to a drop in 
the packet, energy exhaustion, delay, data loss, etc. Therefore, to ensure QoS provision in WSN, in 
addition to the network condition aware routing decision, malicious node detection, and avoidance 
must be ensured. To achieve the principle of network mining, exploring various nodes as well as 
network parameters over the operating period can help detect malicious nodes to prevent them and 
make optimal decisions about adaptive routing.

This paper develops a highly robust node profiling and malicious node identification model based 
on network awareness that ultimately allows secure, QoS-centered, and energy-efficient routing in 
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WSNs. The proposed model includes a distributed time division-based node and allied connection 
monitoring strategy as an optimal solution that mines over the node as well as network statistics to 
detect malicious nodes and make optimal decisions on routing. It is possible to define the overall 
proposed model as a technique where Network Condition-based Node Profiling and Malicious Node 
Identification is carried out to identify malicious nodes. In this using the Bayesian model initially 
deploying nodes around the network, microlevel network evaluation was conducted where dynamic 
node statistics were mined and learned to identify malicious nodes. Noticeably, the proposed method 
hypothesis in this approach that a malicious node may either wish to drop packets, refuse services, 
or predict false information to cause loss of packets or degradation of efficiency.

4. PRoPoSeD SySTeM

Here we are basically discussing the overall proposed method and its simulated implementation. As 
we stated before, our research work basically ensures to enhance the efficiency of the optimal network 
condition awareness with a mobile node or network mining for malicious node identification. Network 
Condition Based Malicious node basically aims to identify the malicious node by mining the node 
or network parameter. since our proposed method designs dynamic routing decisions by applying 
many network conditions/parameters. In the meanwhile, understanding the importance of identifying 
the malicious node is a vital factor in enhancing the network performance because malicious node 
resulting packet loss and often drop the data packets, it causes retransmission of the same packets 
results in more energy consumption. With this motivation, we are identifying the malicious nodes 
and avoiding them from routing to reduce the energy exhaustion due to malicious nodes. The detailed 
discussion of initial network design and deployment is given below.

4.1. Probabilistic WSN Deployment
As stated, to deploy the overall WSN network considering the probabilistic nature of the node behavior 
we have applied the Bayesian concept in which we construct a direct acyclic graph. In this paradigm, 
each connected node in the acyclic graph states a random variable, where the direct links are chosen 
in such a way that the combined probability distribution of the connected nodes could be obtained as 
the product of the conditional probability of each node in the (acyclic) graph. With such conditional 
deployment, a network can be stated to be a Bayesian Network.

The deployed WSN network can be stated to be a hierarchical network with multiple layers 
containing sensor nodes, links, branches, paths, and connectivity. Noticeably, in the deployed network, 
the term called “Node and/or allied Link” signifies that the variable pertaining to a node can be 1 only 
when it is available or able to communicate. In case of a node is not available to make communication, 
in the Bayesian network model it is labeled as “0”. “Branch” states that a node in Bayesian network 
deployment can be “1” only when the connected nodes and allied links are available, else it is labeled 
as “0”. Similarly, “Path” signifies that each connected sensor node is liable to provide a reliable path 
connecting source to the best forwarding paths generated. The other layer of the Bayesian network 
(Figure 1) “Connectivity” states the connectivity between the selected nodes to constitute the best 
forwarding path. In such network deployment, one assumption always prevails that the availability 
of a sensor node is always independent of the other. Similarly, the availability of a link is always 
independent of others.

In our proposed model, the likelihood of the first layer is characterized in terms of the availability 
of each node or link. On contrary, the 2nd and 3rd layers hypothesize a deterministic model signifying 
any link or path can work only when its connected sensor nodes function. In other words, a path can 
work only when its conditional probability is 1. In this manner, our proposed routing model obtains 
the path variables. The 4th layer of the Bayesian model variable signifies the service state of node 
signifying 1 when the node is connected to the forwarding path or not (i.e., 0). Thus, with respective 
conditional probability values, we obtained the node connectivity and availability information.
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4.1.1. Asymmetric IEEE 802.15.4 MAC Information
The source node can experience dynamism with respect to traffic congestion, link failure, node 
failure/dead node causes packet drop at its IEEE 802.15.4 MAC layer. Generally, the major causes 
for packet drop are traffic congestion and out of communication range at IEEE 802.15.4 MAC layer. 
Such data packet drops happen due to the unavailability of information at the source node; hence 
this information availability plays a major role in QoS-centric routing decisions. Malicious nodes 
may deliver ambiguous or wrong MAC information the leads to drop packets/packet loss, and by 
identifying such node performing false MAC information exchange and data packet loss can be 
detected as a malignant node or intrusion node.

In the basic WSN protocol stack, at IEEE 802.15.4 MAC layer a source node will transmit the data 
and receives an acknowledgment from the identified receiver. In the meanwhile, sink node will receive 
the data and transmits an acknowledgment to the targeted source node. Link quality information is also 
a major key network characteristic ensure QoS centric routing decision, so getting link information 
by forwarding the probe message is important. In this mechanism each node should transmit probe 
message to get the link information, it is an extra energy utilization process. In our proposed model 
we highlight on leveraging the beacon message to avoid energy and resource utilization.

In the proposed method, every node transceiver its node characteristics to its adjacent node at each 
interval of 10 seconds. To allow dynamic routing, in our proposed routing protocol, every involving 
node exchanges its link information with one hop distant adjacent node. It can be done by using a 
predefined number of beacon messages. In our proposed protocol, each sensor node continues the 
transmission of beacon messages from one hop adjacent node. By receiving an expected number of 
beacon signals from the adjacent node calculate the link quality for forwarding routing decision. On 
the other hand, the node which transmits a number of irregular acknowledgments to its adjacent node 
and drops data packets will be identified as a malicious node.

Sensor node which does not receive the expected number of any signals(beacon/acknowledgment) 
will be identified as the intruder node or malignant node or misbehaving node. In this sense, an 
involving sensor node A can evaluate the likelihood of node efficiency and successful delivery 
probability to targeted destination Z. By applying the calculated link quality information between 
the nodes will be used in the forwarding routing decisions. In our proposed model, the probability of 
successful delivery by the node at IEEE 802.15.4 MAC layer will be calculated using (1).
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4.1.2. Queuing Overflow
Congestion in a WSN occurs due to exceeding the buffer capacity of a traffic load of a node or 
link. Congestion may take place due to several reasons like unfair utilization of network resources, 
abrupt payload increase, topological variations, etc. If the traffic capacity increases greater than the 
predefined threshold, it results in the dropping of packets and retransmission makes energy exhaustion 
and violation of QoS.

A participating node in the communication exposing queuing delay and traffic congestion data 
will be identified as a malevolent node, which is not allowed to participate in the route formation. In 
our proposed model, we are identifying Malevolent node by examining the traffic intensity of each 
participating node. In our proposed model, the forwarding node gathers and monitors the traffic 
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statistics of each connected adjacent node. Here to gather the load traffic information of each node 
and congestion of each connected node, we calculate the length of the queue at the MAC layer and 
broadcasts this data as ack to all adjacent nodes. Let, p be the one-hop distant sensor node, while 
lq be the qth model cost indicating the length of the queue at a certain time interval. Here, with QL 
represents the total queue length samples with a certain simulation period. we calculate the average 
traffic load at each node using (2).
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=
∑
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Here, lhig  represents the highest queue length of each node at MAC layer and the total traffic 
density at a node is obtained using (3).
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In our proposed protocol, the vibrant value of TloadDens p_  have been calculated or feed to get 
probability of successful transmission by a node, PSuc p_ , as given in (4).

P TLSuc p loadDens p_ _
� ��� ��1  (4)

In our proposed routing protocol, a small Total Load Density (TLD) will be considering and for 
the forward routing selection, a node with a small TLD will be selected. We are obtaining the MAC 
Information, its regularity information at the IEEE 802.15.4 MAC layer and Successful packet delivery 
probability. In addition to this our model also calculate some other network constraints which will 
be changing with dynamic topology conditions

4.1.3. Dynamic Topology
In trust-based WSN transmission, a sensor node transmits or routes to the immediate next node 
only by assuring that it does not force any overhearing to the adjacent nodes. In case, if the node is 
capable of overhearing to the adjacent node, it is classified as a fair or normal node; else it is named 
as a malevolent node. Network condition in which a sensor node cannot catch the retransmission of 
its packet or the destination node is inaccessible because of stale or repeated forwarding data, this 
forwarding node is identified as malevolent or intruder node.

Here we calculate the dependability of each interested or associated node in WSN by utilizing 
the parameters called the Link Index Change Rate (LICR). For an associated node p, we calculate 
the LICR using (5).
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p p p
= +  (5)

In equation (5), ³
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RLO, we acquired the maximum ( δ
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. Like this, we calculated LICR 
as (6).
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By calculating above said parameters NCAMND methodology gets the probability of effective 
packet transmission by a sending node by using the below formula (7).

PTη η= −1  (7)

Above formula (7) uncovers the maximum LICR exhibits more dynamic adjacent network 
condition and subsequently, a contributing node can be identified as a malevolent node. In this way, 
getting the above expressed node/network parameters our designed model recognizes the malevolent 
node/ intruder node in an effective manner.

5. ReSULTS AND DISCUSSIoN

Our research mainly concentrates on enhancing the Quality-of-Service provisioning in WSN. To 
accomplish this, we designed a solution by taking key parameters as discussed here. Malicious nodes 
or Outliers are dangerous in WSN, so these nodes are identified by using dynamic node or network 
parameters. It will help to avoid packet loss likelihood and retransmission which intern reduces 
energy exhaustion.

To examine the efficiency, we have compared the performance of the proposed with a recently 
proposed evolutionary computing named Cuckoo Search and Harmony Search (HS) based routing 
protocol for WSN (Swarna Priya et al., 2020). Noticeably, unlike our proposed routing where both 
malicious neutralizations, as well as optimal routing decision, is considered as an eventual goal, 
Improved Cuckoo Search and Harmony Search (iCSHS) based meta-heuristic Algorithm (Swarna 
Priya et al., 2020) primarily focus on achieving energy-efficiency by identifying optimal forwarding 
node and path in multi-hop transmission scenario. This approach considered four network parameters 
residual node energy, degree of a node, intra-cluster distance, and coverage ratio to perform routing. 
However, the initial parameters such as degree of a node, inter-node distance and coverage are used 
for clustering while residual energy is used for path planning for inter-cluster communication. In this 
approach, Cuckoo search was applied mainly to perform CH estimation, while Harmony Search (HS) 
performed inter-cluster routing decision by applying above stated key network parameters (residual 
node energy, degree of a node, intra-cluster distance, and coverage ratio). Like our proposed routing 
protocol, HS based routing approach at first estimates its hop-count from the destination node, which 
is followed by the estimation of probability factors P(i,j), which signifies whether a neighboring node 
or next-hop node j should be considered for path planning or not. Mathematically, the source node 
i estimates P(i,j) using (8).
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In (8), the parameter where Ni states the set of neighboring nodes, while hi and hk presents the 
number of hop-counts from the source node (i) and neighboring node or adjacent node j, respectively. 
Thus, obtaining the hop counts and eventual. Initializing the HM heuristic model, the energy 
consumption of energy path (9) is obtained and a path with the highest consumption is labeled as 
Pworst. In computational evolution a new path X1 is created based on a certain Harmony memory 
consideration rates (HMCR) (here, HMCR=0.7). For the first node in the path X as the source node, 
to select the next-hop node or neighboring node HS generates an arbitrary number between 0 and 
1. In case the value of X1 is less than HMCR (0.7) then the next-hop node is selected from another 
column. Otherwise, that node is considered as the next-hop node to constitute a forwarding path.
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This process is continued till a complete path between source and destination is not formed. 
Additionally, iCSHS uses an additional attribute called Pitch Adjustment Rate (PAR=0.8), where to 
enhance path reliability each path is compared with PAR and if it falls below PAR, a random node 
from the path is substituted by the neighbor node and this process continues till an optimal path is 
obtained. A detailed discussion of the results obtained is given as follows. Noticeably, to enable the 
better presentation of the results the NS2 based simulated outputs have been converted into MATLAB, 
which are depicted in Figure 1, Figure 2, and Figure 3.

In this paper, we are designing an efficient approach by the name Network Parameter based 
Malicious Node Detection to yield Quality of Service centric routing. It uses various dynamic node 
and/or network parameters such as successful data delivery ratio, irregular MAC information, and data 
overflowing to perform malevolent node detection. So, this robust implementation of the proposed 
method will enable reliable and QoS centric data communication in WSNs. The proposed model is 
implemented using the network simulator NS2 development platform. The simulation variables and 
underlying experimental setup values taken in this work are as follows. Considering 49 nodes deployed 
over the WSN dimension of 100X100 for the network design and simulation. IEEE 802.15.4 Mac 
protocol is used between the network and physical layer, IEEE 802.15.4 PHY protocol is used at the 
physical layer. A radio signal of 200 meters is considered with a transmission rate of 10-512 packets 
per second. We used career frequency of 2.5GHz, the antenna used here for transceiver function is 
an omnidirectional antenna. It uses the efficiency of RF power amplifier value of 0.47, transmission 
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channel factor of 30dB, the power density of radio channel is -130 dBm/Hz. At the receiver side 
noise factor taken is 10dB and the bit error rate is 10-3dB. The transmitter circuit consumes 98.2 mW 
power, a packet size of 512 Kbytes, and an antenna gain of 5dB.

Figure 1 exhibits the delay incurred in both approaches. As already indicated, the iCSHS model 
at first applies Cuckoo search to perform clustering optimization, which is then followed by HS 
based routing decision where it performs two-stage iterative node and path verification. This overall 
process increases latency. On contrary, our proposed routing protocol obtains network parameters 
dynamically and updates the same in a proactive manner, which helps the proposed model to perform 
the respective tasks efficiently. It makes our proposed routing protocol time-efficient, which is vital 
for any contemporary WSN based communication systems.

Observation of the overall system performance inferred that the proposed method achieves better 
reliability, a higher success rate of transmission, low energy consumption, and end-to-end delay. 
It makes our proposed system suitable for real-time WSN routing purposes. The overall research 
inference is given in the subsequent section. As stated, iCSHS model is the computationally exhaustive 
approach and hence is supposed to incur high energy consumption during clustering optimization 
and subsequent path planning. It makes iCSHS undergo high energy consumption. On contrary, our 
proposed model preserves energy contributed due to low or reduced computational complexity and 
retransmission probability (Figure 2).

As stated, iCSHS model is the computationally exhaustive approach and hence is supposed 
to incur high energy consumption during clustering optimization and subsequent path planning. It 
makes iCSHS undergo high energy consumption. On contrary, our proposed model preserves energy 
contributed due to low or reduced computational complexity and retransmission probability. Our 
proposed model reduces energy consumption by reducing the queuing delay which is common in a 
busy network. Retransmission will consume more energy in the network, it can be done by the result 
of having outlier nodes in the network.

Figure 1. End-to-End delay Vs node density
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So, in our proposed model we are identifying then outlier nodes based on three network conditions 
like Asymmetric IEEE 802.15.4 MAC information Exchange, Queuing Overflow, and Dynamic 
Topology. So, the retransmission possibility is less because of these features. In this conjunction, 
considering packet loss performance we find that the proposed routing model exhibits low loss as 
compared to iCSHS protocol. The influence of such robustness can be easily envisaged in Figure 
3, where NCBOD has shown lower Packet loss due to packet drop as compared to iCSHS protocol.

Thus, by observing the overall performance of our proposed system, it can be inferred that 
the proposed method achieves better reliability, a higher success rate of transmission, low energy 
consumption, and minimum end-to-end delay. It makes our proposed system suitable for real-time 
WSN routing purposes.

6. CoNCLUSIoN

The current era of the smart world having a huge demand for IoT devices and utilization of these 
devices in an energy-efficient and reliable manner. The quality of service is an important security 
goal of data communication, it should be achieved in the machine-to-machine and smart IoT 
communication. In this paper, we are considering the dynamic nature of the wireless sensor network 
to collect various dynamic parameters to accomplish QoS. Here we are presenting an optimal routing 
protocol based on the network conditions i.e. Network Condition Based Malicious node detection 
protocol. This exploits various network conditions such as dynamic or irregular MAC information 
exchange, queuing overflow probability of True positive data delivery to detect the malevolent node. 
This approach yields reliable data transmission, avoids delay in transmission, reduces packet loss, 
retransmission probability will be reduced, and hence achieved with energy efficacy. It also reduces the 
computational cost by ensuring high reliability and Quality of Service provision. The implementation 
of our proposed protocol is tested in network simulator NS2. It shows the reduction in packet loss due 

Figure 2. Energy exhaustion or consumption Vs node density
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to malicious node detection with the IEEE 802.15.4 protocol standard. It also shows the proposed 
method is suitable for real-time applications. In the future enhancement, the link connectivity and 
availability of a node can be considered to design an effective optimal routing using any machine 
learning algorithm. The malevolent patterns can be converted as the knowledge to train the network, 
it enables time-efficient routing decision in future steps by not repeating the same detection process.

Figure 3. Packet Drop (%) Vs node density
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