A Method for Angular Super-Resolution via Big Data Radar System

A Method for Angular Super-Resolution via Big Data Radar System

Xin Zhang (School of Information Science and Technology, Dalian Maritime University, Dalian, China), Xiaoming Liu (School of Information Science and Technology, Dalian Maritime University, Dalian, China) and Zhenyu Na (School of Information Science and Technology, Dalian Maritime University, Dalian, China)
DOI: 10.4018/IJMCMC.2017070101
OnDemand PDF Download:
No Current Special Offers


This paper proposes a novel method for enhancing angular resolution in multimedia big data navigation radar system. A new radar scanning model is designed on the basis of quadratic programming theory, by which the proposed Gradient Projection (GP) algorithm is used for solving the optimal solution of this model, and then the target information can be restored successfully at low signal to noise ratio (SNR). Simulations further confirm our theoretical discussion, and manifest that the efficiency and applicability of the proposed method is favorable that the resolution ratio reaches 4~11 times under our proposed scanning model framework if SNR is above 10dB. Moreover, the designed model is suitable for some other angular super-resolution methods, the restoration ratio of which can be improved while SNR is be equal or greater than 10dB. In this case, a higher signal to reconstructed error ratio (SRER) is provided by our method.
Article Preview


In modern navigation radar platform, the multimedia big data processing system is always used in the radar receiver. In this case, the resolution of radar will be influenced by a large number of echo data. As one of the most important indexes of measuring object identification ability, radar angular resolution plays an important role in radar big data processing.

The objective is to distinguish multiple close targets, which are located in one range cell and the same beam. Previous research stated the radar angular resolution is relative to radar beam-width θ. The narrower beam-width is, the higher resolution is. But θ is limited by antenna aperture size d (Xing et al., 2008; Richards, 1988) namely


Here IJMCMC.2017070101.m02 represents the wavelength. In theory, angular resolution will be improved by increasing antenna aperture. However, as a result of the constraint of antenna’s physical weight and effective wavelength, it is so difficult to design a desired antenna (Guan et al., 2012) and (Wang et al., 2015). Accordingly, folks have been searching suitable signal or information processing techniques to enhance radar angular resolution beyond those limitation factors.

For a long time, the problem of radar angular super-resolution is tackled by the techniques of Synthetic Aperture Radar (SAR) or Doppler Beam Sharpening (DBS) even though some blinds often exist in radar forward-looking direction on account of the constraint of Doppler information. For instance, an adaptive super-resolution approach is proposed via digital beam-forming (Fischer et al., 2012), by which multiple transmitters are applied to sensor to form a synthetic aperture, the size of which is almost twice that of physical aperture d, the size of which is almost twice that of physical aperture, so the resolution could be increased by time. Meanwhile, constant False Alarm Rate (CFAR) is used to select targets before actual super-resolution process and it reduces the computational complexity while estimate the targets angular information. The operation time needed for calculating digital beam-forming system was tremendously decreased. Tang introduces a method depended on a multi-channel L1 regularization model for sharpening the beam. It is demonstrated that the noise in radar receiver is significantly suppressed that the performance of beam sharpening is ensured while adopting an extended iterative shrinkage threshold (IST) algorithm to solve the regularization problem. Consequently, the noise leaks problem caused by channel pattern that is not satisfied with the strong prime condition in mono-pulse radar could be addressed (Tang et al., 2014). These methods mentioned above have significant effect on achieving radar angular super-resolution. Unfortunately, the resolution results are not satisfactory, especially the some close targets those are under considerable noise. It is so hard to determine the orientations precisely.

We know that when the radar is scanning a certain region, the echo signal IJMCMC.2017070101.m03 is regarded as the convolution of the antenna pattern IJMCMC.2017070101.m04 and the target angular information IJMCMC.2017070101.m05. We formulate it with an equation as follows


where the antenna pattern is denoted with antenna directivity, and n represents the noise in radar receiver. Hence, radar angular resolution is considered as a de-convolution process that is to restore x while g and h are known. Nevertheless, as shown in Eq. (2), the number of echo is less than that of target while angle interval between two targets is smaller than the beam-width. It is unable to obtain the target angular information at this time. Therefore, we need to use some special signal processing methods to distinguish these targets.

Complete Article List

Search this Journal:
Open Access Articles
Volume 13: 4 Issues (2022): Forthcoming, Available for Pre-Order
Volume 12: 4 Issues (2021): 2 Released, 2 Forthcoming
Volume 11: 4 Issues (2020)
Volume 10: 4 Issues (2019)
Volume 9: 4 Issues (2018)
Volume 8: 4 Issues (2017)
Volume 7: 4 Issues (2016)
Volume 6: 4 Issues (2014)
Volume 5: 4 Issues (2013)
Volume 4: 4 Issues (2012)
Volume 3: 4 Issues (2011)
Volume 2: 4 Issues (2010)
Volume 1: 4 Issues (2009)
View Complete Journal Contents Listing