Article Preview
Top1. Introduction
The nation that leads the world in creating new sources of clean energy will be the nation that leads the 21st century global economy. -Barack Obama
We must leave future generations with the world energy which will help to avoid conflicts and unreasonable rivalry for energy security. -V. V. Putin
The recent report of the UN predicts catastrophic deterioration of a climatic situation on the planet. Nobel Prize laureate, economist Michael Spence calls for immediate actions (the article “Growth in the New Climate Economy” at Project Syndicate), otherwise future expenses on neutralization of ecological damage will be “very heavy” for global economy. Recently published report of the Global Commission on the Economy and Climate “The New Climate Economy: Better Growth, Better Climate”, proves that the actions for fight against climate change not only do not slow down the economic growth, but even can accelerate it considerably - and in the near future. Therefore, the measures to reduce environmental pollution, save fuel and other resources, develop cogeneration, use renewable energy resources on a large scale, and assess their efficiency are very important (Jovanovic, Turanjanin, Bakic, Pezo & Vucicevic B, 2011; Pezzini, Gomis-Bellmunt & Sudrià-Andreu, 2011; Melentiev, 1987; Melentiev, 1993; Twidell & Weir 1990). Besides, cogeneration and wind power industry are the most significant technologies for fuel saving and reducing greenhouse gas emissions.
Russia and other countries apply methods for separation of fuel and financial costs in the energy sector mainly at cogeneration (combined heat and power production) plants (CPs) in order to assess their efficiency and fix heat and electricity tariffs (Alexanov, 1995; Arakelyan, Kozhevnikov & Kuznetsov, 2006; Gitelman & Ratnikov, 2008; Kharaim, 2003; Kuznetsov, 2006; Malafeev, Smirnov, Kharaim, Khrilev & Livshits, 2003; Melentiev, 1987; Melentiev, 1993; Padalko & Zaborovsky, 2006; Popyrin, Denisov & Svetlov, 1989; Semenov, 2002). The problem of interrelated pricing of electric and heat energy is especially urgent for the countries that consume a lot of fuel for heat supply and have a high share of CPs in their energy systems. However, in this case it appears to be important to pay more attention to the assessment of the overall efficiency of energy supply systems.
The issue of separating total costs of cogeneration is highly topical not only for the energy sector, but also for other branches of industry producing several types of products. Moreover, a great number of methods for separating costs are applied in the energy sector and industry.
Development of methods for separating costs at CPs leads in particular to the following conclusion (Gitelman & Ratnikov, 2008; Kharaim, 2003; Malafeev, Smirnov, Kharaim, Khrilev & Livshits, 2003; Semenov, 2002): Allocation of CPs costs requires that the principle of equivalence between electricity and heat markets (Gitelman & Ratnikov, 2008) (equivalent equilibrium (Malafeev, Smirnov, Kharaim, Khrilev & Livshits, 2003)) be satisfied, since the use of combined generation technology involves no individual heat and power generation businesses. Here it is possible to speak just about the combined generation business proper, because the inefficiency of one decreases the efficiency of the other, so they can be only equally efficient or inefficient. And only a temporary imbalance is acceptable.
In author’s opinion the efficiency of energy supply systems is characterized by three aspects – economic, resource (including fuel) and environmental. Therefore, new methods are suggested by the author (Zharkov, 2009) for the overall assessment of economic, resource and environmental efficiency of CPs and the energy supply systems as a whole and the ways to enhance it with emphasis on the cogeneration and renewables as the main directions for fuel economy.