Combining Trust Propagation and Topic-Level User Interest Expansion in Recommender Systems

Combining Trust Propagation and Topic-Level User Interest Expansion in Recommender Systems

Zukun Yu (Computer Science College, Zhejiang University, Hangzhou, China), William Wei Song (School of Technology and Business Studies, University of Dalarna Borlänge, Sweden), Xiaolin Zheng (Computer Science College, Zhejiang University, Hangzhou, China) and Deren Chen (Computer Science College, Zhejiang University, Hangzhou, China)
Copyright: © 2016 |Pages: 19
DOI: 10.4018/IJWSR.2016040101


With the development of E-commerce and Internet, items are becoming more and more, which brings a so called information overload problem that it is hard for users to find the items they would be interested in. Recommender systems emerge to response to this problem through discovering user interest based on their rating information automatically. But the rating information is usually sparse compared to all the possible ratings between users and items. Therefore, it is hard to find out user interest, which is the most important part in recommender systems. In this paper, we propose a recommendation method TT-Rec that employs trust propagation and topic-level user interest expansion to predict user interest. TT-Rec uses a reputation-based method to weight users' influence on other users when propagating trust. TT-Rec also considers discovering user interest by expanding user interest in topic level. In the evaluation, we use three metrics MAE, Coverage and F1 to evaluate TT-Rec through comparative experiments. The experiment results show that TT-Rec recommendation method has a good performance.
Article Preview


E-commerce is developing so fast that nearly everyone who use internet would like to buy or sale items (products and services) or get information about items. E-commerce websites and open rating systems such as allow registered users to rate items they have bought and to get recommendations about the items which are thought of having more possibilities of fitting their preferences. For instance, users can rate items with numerical scores and publish trust or distrust relationships with other users in the However, users are suffering from an information overload problem (Chen, Shang, & Kao, 2009), which means that too much information makes it too hard for users to select the most suitable or favored ones because they do not have enough time to know or even browse all the information. In the area of item transaction such as e-commerce, recommender systems emerge to response to the aforementioned information overload problem by recommending users with the items they might like automatically.

Recommender systems are relevant with data mining, which is another important way to resolve information overload problem. Data mining is defined as the process of extracting implicit, valuable and interesting rules (or patterns) from large sets of data (Shekhar, Lu, Chawla, & Zhang, 2000). Some data mining technologies including classification, clustering and association rules have been applied in the area of recommender systems (Schafer, 2005). For instance, Good et al. utilize classification technology of data mining based on the vector of movie features to analyze uses’ interest in movies (Good et al., 1999). Another example of data mining technology used in recommender systems is that the association rule discovery is used to find out the items associated with the ones target users have expressed interest in (Sarwar, Karypis, Konstan, & Riedl, 2001). However, recommender systems are also different from data mining. Recommender systems are expected to generate recommendation to fit users’ interest rather than extracting rules by mining data. The key problem of recommender systems is to analyze historical user data and then predict users’ interests. Collaborative filtering (CF) is one of the most popular methods used in predicting users’ interest in recommender systems. CF methods do not utilize data mining technologies. They recommend target users with the items generated by aggregating their neighbors’ interest.

In both research area and industry area, recommender systems are becoming more and more popular. However, recommender systems are still suffering from at least two major challenges. The first is data sparsity problem, which results from ratings given by users are often very less compared to the massive amounts of items. The second is cold start problem, which is due to the users (usually new users) who review few items and provide little information about themselves. The two problems cause recommender systems hard to discover user interest. Many recommender systems have taken into account the data sparsity problem and the cold start problem in user interest analyzing (Huang, Chen, & Zeng, 2004). To resolve the two problems, trust has been incorporated into recommender systems to help leverage the performance of recommender systems (Jamali & Ester, 2009;Massa & Bhattacharjee, 2004).

Complete Article List

Search this Journal:
Open Access Articles
Volume 16: 4 Issues (2019): 2 Released, 2 Forthcoming
Volume 15: 4 Issues (2018)
Volume 14: 4 Issues (2017)
Volume 13: 4 Issues (2016)
Volume 12: 4 Issues (2015)
Volume 11: 4 Issues (2014)
Volume 10: 4 Issues (2013)
Volume 9: 4 Issues (2012)
Volume 8: 4 Issues (2011)
Volume 7: 4 Issues (2010)
Volume 6: 4 Issues (2009)
Volume 5: 4 Issues (2008)
Volume 4: 4 Issues (2007)
Volume 3: 4 Issues (2006)
Volume 2: 4 Issues (2005)
Volume 1: 4 Issues (2004)
View Complete Journal Contents Listing