Detection and Prevention of Single and Cooperative Black Hole Attacks in Mobile Ad Hoc Networks

Detection and Prevention of Single and Cooperative Black Hole Attacks in Mobile Ad Hoc Networks

P. Subathra (Thiagarajar College of Engineering, India), S. Sivagurunathan (Thiagarajar College of Engineering, India) and N. Ramaraj (GKM College of Engineering and Technology, India)
DOI: 10.4018/jbdcn.2010010103

Abstract

A Mobile Ad hoc Network (MANET) is a collection of wireless computers (nodes) communicating over multi-hop paths, without infrastructures such as base stations and access points. Nodes must cooperate to provide necessary network functionalities. The Dynamic Source Routing (DSR) protocol is a principal routing protocol in MANET, where security can be compromised by a “Black Hole” attack. In this attack, a malicious node claims to have the shortest path to the destination and attracts all traffic and drops all packets sent for forwarding, leading to performance degradation in the network. The situation becomes even more severe when two or more nodes cooperate and perform an attack called the “Cooperative Black Hole” attack. This article proposes a solution based on probing to identify and prevent such attacks. The proposed solution discovers a secure route between the source and destination by identifying and isolating both single and cooperative black holes, making the MANET resistant against such attacks. Simulation results show that the protocol provides better security and performance in terms of detection time, packet delivery ratio and false negative probability in comparison with trust and probe based schemes.
Article Preview

The literature review carried out in this area revealed that the problem of packet dropping attack is basically handled by five different types of techniques as shown in Figure 1.

Figure 1.

Taxonomy of techniques used to detect/ prevent packet dropping attacks in MANETs.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 15: 2 Issues (2019): 1 Released, 1 Forthcoming
Volume 14: 2 Issues (2018)
Volume 13: 2 Issues (2017)
Volume 12: 2 Issues (2016)
Volume 11: 2 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing