Evolutionary Induction of Mixed Decision Trees

Evolutionary Induction of Mixed Decision Trees

Marek Kretowski, Marek Grzes
Copyright: © 2007 |Pages: 15
DOI: 10.4018/jdwm.2007100104
OnDemand:
(Individual Articles)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

This article presents a new evolutionary algorithm (EA) for induction of mixed decision trees. In nonterminal nodes of a mixed tree, different types of tests can be placed, ranging from a typical inequality test up to an oblique test based on a splitting hyper-plane. In contrast to classical top-down methods, the proposed system searches for an optimal tree in a global manner, that is it learns a tree structure and finds tests in one run of the EA. Specialized genetic operators are developed, which allow the system to exchange parts of trees, generating new sub-trees, pruning existing ones as well as changing the node type and the tests. An informed mutation application scheme is introduced and the number of unprofitable modifications is reduced. The proposed approach is experimentally verified on both artificial and real-life data and the results are promising. Scaling of system performance with increasing training data size was also investigated.

Complete Article List

Search this Journal:
Reset
Volume 20: 1 Issue (2024)
Volume 19: 6 Issues (2023)
Volume 18: 4 Issues (2022): 2 Released, 2 Forthcoming
Volume 17: 4 Issues (2021)
Volume 16: 4 Issues (2020)
Volume 15: 4 Issues (2019)
Volume 14: 4 Issues (2018)
Volume 13: 4 Issues (2017)
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing