Extracting Usage Patterns from Power Usage Data of Homes' Appliances in Smart Home using Big Data Platform

Extracting Usage Patterns from Power Usage Data of Homes' Appliances in Smart Home using Big Data Platform

Ali Reza Honarvar (Computer Science and Engineering and Information Technology Department, Shiraz University, Shiraz, Iran) and Ashkan Sami (Computer Science and Engineering and Information Technology Department, Shiraz University, Shiraz, Iran)
DOI: 10.4018/IJITWE.2016040103
OnDemand PDF Download:
$30.00
List Price: $37.50

Abstract

Advances in sensing techniques and IOT enabled the possibility to gain precise information about devices in smart home and smart city environments. Data analysis for sensors and devices may help us develop friendlier systems for smart city or smart home. Sequence pattern mining extracts interesting sequence pattern from data. Electricity usage dose follow a sequence of events. In this study the authors investigate this issue and extracted valuable sequence pattern from real appliances' power usage dataset using PrefixSpan. The experiments in this research is implemented on Spark as a novel distributed and parallel big data processing platform on two different clusters and interesting findings are obtained. These findings show the importance of extracting sequence pattern from power usage data to various applications such as decreasing CO2 and greenhouse gas emission by decreasing the electricity usage. The findings also show the needs to bring big data platforms to processing such kind of data which is captured in smart home and smart cities.
Article Preview

1. Introduction

People spend a dominant part of their time in their home. As society and innovation advance, enthusiasm for enhancing the intelligence of the environments in which we live and work is developing. By filling different places with sensors and gathering data during daily routines, researchers can gain information on human daily conduct and the effect of conduct on the inhabitants and their surroundings (Tsai, 2014).

Incorrect utilizations of home apparatuses alongside absence of a smart energy infrastructure advocated to unnecessary waste or energy consumption in most places. Today because of the development of sensor, the power use information of apparatuses can be gathered effortlessly. Specifically, an expanding number of smart power meters, which helps data collection of appliance usage, have been deployed. With the enormous amount of appliance usage data, valuable information may exist but hidden. Therefore, proposing data mining algorithms to find appliance usage patterns from this huge amount of usage data so as to make usage behavior of appliances clear.

Many researchers have focused on the reduction of electricity usage in residences because of its role in CO2 and greenhouse gases emissions. (Atanasov, 2015) presents an approach to data modeling in the domain of home energy saving which extends existing solutions with context-ware concepts and relationships. However, electricity conservation is a tedious task for residential users due to the lack of detailed electricity usage. If representative patterns of appliance electricity usage are existing, inhabitants can adjust their apparatus utilization to conserve the energy effectively (Chen, 2015).

Appliance usage patterns offer clients to better some assistance with understanding how they utilize the apparatuses at home and distinguish irregular uses of apparatuses. Additionally, it encourages appliance manufacturers to design clever control of smart appliances (Chen, 2014). As the appliances’ usage data is so large which is called big data, extracting valuable information needs big data processing tools such as Spark (Karau, 2015) and Hadoop (White, 2012). Generating data in in smart city and smart home are placed in the category of big data as it has the big data challenges described in (Russom, 2011) and that can best be described along the so-called 3 V’s: Volume, Velocity, and Variety.

In this research valuable sequence pattern from real appliances’ usage dataset of SGSC (Motlagh, 2015) is extracted using PrefixSpan (Pei, 2001). The experiments in this research is implemented on Spark as a novel distributed and parallel big data processing platform on two different clusters. The contributions of this paper are as follows: creating usage sequences from the power usage data of each appliance, mining the sequences and extracting interesting sequence patterns by PrefixSpan using a big data platform, and some findings that show that the dataset and computations distribution imbalance can impact the efficiency of PrefixSpan when implemented on distributed environment such as Apache Spark.

The rest of the paper is organized as follows: Related works are discussed in section 2. In section 3, some preliminaries is discussed. The dataset used in our experiments and the experiments and results were brought in section 4 and 5 respectively. Finally, in section 6 conclusion and future research are discussed.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 12: 4 Issues (2017)
Volume 11: 4 Issues (2016)
Volume 10: 4 Issues (2015)
Volume 9: 4 Issues (2014)
Volume 8: 4 Issues (2013)
Volume 7: 4 Issues (2012)
Volume 6: 4 Issues (2011)
Volume 5: 4 Issues (2010)
Volume 4: 4 Issues (2009)
Volume 3: 4 Issues (2008)
Volume 2: 4 Issues (2007)
Volume 1: 4 Issues (2006)
View Complete Journal Contents Listing