High Performance Scheduling Mechanism for Mobile Computing Based on Self-Ranking Algorithm

High Performance Scheduling Mechanism for Mobile Computing Based on Self-Ranking Algorithm

Hesham A. Ali, Tamer Ahmed Farrag
DOI: 10.4018/jitwe.2006040103
(Individual Articles)
No Current Special Offers


Due to the rapidly increasing number of mobile devices connected to the Internet, a lot of research is being conducted to maximize the benefit of such integration. The main objective of this article is to enhance the performance of the scheduling mechanism of the mobile computing environment by distributing some of the responsibilities of the access point among the available attached mobile devices. To this aim, we investigate a scheduling mechanism framework that comprises an algorithm that provides the mobile device with the authority to evaluate itself as a resource. The proposed mechanism is based on the “self ranking algorithm” (SRA), which provides a lifetime opportunity to reach a proper solution. This mechanism depends on an event-based programming approach to start its execution in a pervasive computing environment. Using such a mechanism will simplify the scheduling process by grouping mobile devices according to their self-ranking value and assigning tasks to these groups. Moreover, it will maximize the benefit of the mobile devices incorporated with the already existing Grid systems by using their computational power as a subordinate value to the overall power of the system. Furthermore, we evaluate the performance of the investigated algorithm extensively, to show how it overcomes the connection stability problem of the mobile devices. Experimental results emphasized that the proposed SRA has a great impact in reducing the total error and link utilization compared with the traditional mechanism.

Complete Article List

Search this Journal:
Volume 19: 1 Issue (2024)
Volume 18: 1 Issue (2023)
Volume 17: 4 Issues (2022): 1 Released, 3 Forthcoming
Volume 16: 4 Issues (2021)
Volume 15: 4 Issues (2020)
Volume 14: 4 Issues (2019)
Volume 13: 4 Issues (2018)
Volume 12: 4 Issues (2017)
Volume 11: 4 Issues (2016)
Volume 10: 4 Issues (2015)
Volume 9: 4 Issues (2014)
Volume 8: 4 Issues (2013)
Volume 7: 4 Issues (2012)
Volume 6: 4 Issues (2011)
Volume 5: 4 Issues (2010)
Volume 4: 4 Issues (2009)
Volume 3: 4 Issues (2008)
Volume 2: 4 Issues (2007)
Volume 1: 4 Issues (2006)
View Complete Journal Contents Listing