Learning of OWL Class Descriptions on Very Large Knowledge Bases

Learning of OWL Class Descriptions on Very Large Knowledge Bases

Sebastian Hellmann (Universität Leipzig, Germany), Jens Lehmann (Universität Leipzig, Germany) and Sören Auer (Universität Leipzig, Germany)
Copyright: © 2009 |Pages: 24
DOI: 10.4018/jswis.2009040102


The vision of the Semantic Web is to make use of semantic representations on the largest possible scale - the Web. Large knowledge bases such as DBpedia, OpenCyc, GovTrack, and others are emerging and are freely available as Linked Data and SPARQL endpoints. Exploring and analysing such knowledge bases is a significant hurdle for Semantic Web research and practice. As one possible direction for tackling this problem, the authors present an approach for obtaining complex class descriptions from objects in knowledge bases by using Machine Learning techniques. They describe in detail how we leverage existing techniques to achieve scalability on large knowledge bases available as SPARQL endpoints or Linked Data. Their algorithms are made available in the open source DL-Learner project and we present several real-life scenarios in which they can be used by Semantic Web applications.

Complete Article List

Search this Journal:
Open Access Articles
Volume 17: 4 Issues (2021): Forthcoming, Available for Pre-Order
Volume 16: 4 Issues (2020): 3 Released, 1 Forthcoming
Volume 15: 4 Issues (2019)
Volume 14: 4 Issues (2018)
Volume 13: 4 Issues (2017)
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing