Music Retrieval and Recommendation Scheme Based on Varying Mood Sequences

Music Retrieval and Recommendation Scheme Based on Varying Mood Sequences

Sanghoon Jun, Seungmin Rho, Eenjun Hwang
Copyright: © 2010 |Pages: 16
DOI: 10.4018/jswis.2010040101
(Individual Articles)
No Current Special Offers


A typical music clip consists of one or more segments with different moods and such mood information could be a crucial clue for determining the similarity between music clips. One representative mood has been selected for music clip for retrieval, recommendation or classification purposes, which often gives unsatisfactory result. In this paper, the authors propose a new music retrieval and recommendation scheme based on the mood sequence of music clips. The authors first divide each music clip into segments through beat structure analysis, then, apply the k-medoids clustering algorithm for grouping all the segments into clusters with similar features. By assigning a unique mood symbol for each cluster, one can transform each music clip into a musical mood sequence. For music retrieval, the authors use the Smith-Waterman (SW) algorithm to measure the similarity between mood sequences. However, for music recommendation, user preferences are retrieved from a recent music playlist or user interaction through the interface, which generates a music recommendation list based on the mood sequence similarity. The authors demonstrate that the proposed scheme achieves excellent performance in terms of retrieval accuracy and user satisfaction in music recommendation.
Article Preview

In this section, we introduce some of the recent efforts in the area of music mood recognition, retrieval and recommendation. We first investigate the state of the art musical mood/emotion recognition techniques.

Complete Article List

Search this Journal:
Volume 20: 1 Issue (2024)
Volume 19: 1 Issue (2023)
Volume 18: 4 Issues (2022): 2 Released, 2 Forthcoming
Volume 17: 4 Issues (2021)
Volume 16: 4 Issues (2020)
Volume 15: 4 Issues (2019)
Volume 14: 4 Issues (2018)
Volume 13: 4 Issues (2017)
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing