A Neuromorphic Single-Electron Circuit for Noise-Shaping Pulse-Density Modulation

A Neuromorphic Single-Electron Circuit for Noise-Shaping Pulse-Density Modulation

Andrew Kilinga Kikombo (Hokkaido University, Japan), Tetsuya Asai (Hokkaido University, Japan), Takahide Oya (Yokohama National University, Japan), Alexandre Schmid (Swiss Federal Institute of Technology (EPFL), Switzerland), and Yusuf Leblebici (Swiss Federal Institute of Technology (EPFL), Switzerland)
Copyright: © 2009 |Pages: 13
DOI: 10.4018/jnmc.2009040106
OnDemand:
(Individual Articles)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

We propose a bio-inspired circuit performing pulse-density modulation with single-electron devices. The proposed circuit consists of three single-electron neuronal units, receiving the same input and are connected to a common output. The output is inhibitorily fedback to the three neuronal circuits through a capacitive coupling. The circuit performance was evaluated through Monte-Carlo based computer simulations. We demonstrated that the proposed circuit possesses noise-shaping characteristics, where signal and noises are separated into low and high frequency bands respectively. This significantly improved the signal-tonoise ratio (SNR) by 4.34 dB in the coupled network, as compared to the uncoupled one. The noise-shaping properties are as a result of i) the inhibitory feedback between the output and the neuronal circuits, and ii) static noises (originating from device fabrication mismatches) and dynamic noises (as a result of thermally induced random tunneling events) introduced into the network.

Complete Article List

Search this Journal:
Reset
Volume 3: 4 Issues (2011)
Volume 2: 4 Issues (2010)
Volume 1: 4 Issues (2009)
View Complete Journal Contents Listing