PROSE: A Plugin-Based Framework for Paraconsistent Reasoning on Semantic Web

PROSE: A Plugin-Based Framework for Paraconsistent Reasoning on Semantic Web

Xiaowang Zhang (School of Computer Science and Technology, Tianjin University, Tianjin, China), Zhiyong Feng (School of Computer Software, Tianjin University, Tianjin, China), Wenrui Wu (School of Computer Science and Technology, Tianjin University, Tianjin, China), Xin Wang (School of Computer Science and Technology, Tianjin University, Tianjin, China) and Guozheng Rao (School of Computer Science and Technology, Tianjin University, Tianjin, China)
Copyright: © 2018 |Pages: 19
DOI: 10.4018/IJSWIS.2018010105
OnDemand PDF Download:
$30.00
List Price: $37.50

Abstract

The study of paraconsistent reasoning with ontologies is especially important for the Semantic Web since knowledge is not always perfect within it. However, classical OWL reasoners cannot support reasoning with inconsistent ontologies. In this article, the authors present a plugin-based framework called prose to provide rich paraconsistent reasoning services for OWL ontologies, whose architecture contains the three following parts: a classical OWL reasoner, a multi-valued transformer, and an OWL API connecting with them. Within the proposed framework prose, they implement different multi-valued paraconsistent reasoning in the OWL. Moreover, they select three popular classical OWL reasoners and two typical kinds of reasoning services for users. As the authors excepted, prose does exactly enable current classical OWL reasoners to tolerate inconsistency in a simple and convenient way. Finally, they evaluate the three reasoners in a united framework (prose) and, as a result, those results can amend the analysis of the three reasoners on inconsistent ontologies.
Article Preview

1. Introduction

As an extension of the World Wide Web (WWW), the Semantic Web (Berners-Lee et al., 2001) becomes more constantly changing and highly collaborative. Ontologies considered one of the pillars of the Semantic Web will rarely be perfect due to many reasons, such as modeling errors, migration from other formalisms, merging ontologies, and ontology evolution (Flouris et al., 2006; Pan et al., 2014; Zhang et al., 2016). As a fragment of predicate logic, description logic (DL), which is the logical foundation of the Web Ontology Language (McGuinness et al., 2009; Compton., 2015) (e.g., sublanguages OWL Lite and OWL DL correspond to and respectively), is unable to tolerate inconsistencies occurring in ontologies (Bertossi et al., 2005). Thus, the topic of inconsistency handling in OWL and DL has received extensive interests in the community in recent years (Maier et al., 2013; Lecue et al., 2015).

There are several approaches to handling inconsistencies in DLs. All of them can be functionally roughly classified into two different types. One type is based on the assumption that inconsistencies indicate erroneous data which are to be removed in order to obtain a consistent ontology (Huang et al., 2005; Qi et al., 2006; Qi et al., 2009). In these approaches, researchers hold a common view that ontologies should be completely free of inconsistencies, and thus try to eliminate inconsistencies from them to recovery consistency immediately by any means possible. However, there are some different opinions about the first type of treating inconsistency. And (Bertossi et al., 2005) argues that inconsistencies in knowledge are the norm in the real world, and so should be formalized and used, rather than always rejected. The other, called inconsistency-tolerant (or paraconsistent) approaches, is not to simply avoid inconsistencies but to apply non-standard reasoning methods (e.g., non-standard inference or non-classical semantics) to obtain meaningful answers (Odintsov et al., 2008; Alejandro et al., 2010; Zhang et al., 2010; Kamide et al., 2010; Nguyen et al., 2010; Maier et al., 2013; Zhang et al., 2013; Du J et al., 2013). In the second type of approaches, inconsistency treated as a natural phenomenon in realistic data, should be tolerated in reasoning. So far, the main idea of existing paraconsistent methods for handling inconsistency is introducing either non-standard inference or non-classical semantics to draw meaningful conclusions from inconsistent KBs (Flouris et al., 2006). Those paraconsistent approaches with non-standard inference presented by (Zhang et al., 2013; Alejandro et al., 2010) are employing argument principles where consistent subsets are selected from an inconsistent KB as substitutes in reasoning. Those approach with preferred semantics by (Du J et al., 2013) are introducing some preference between interpretations and collecting minimal interpretations as candidate models. In this sense, this approach is employing a non-monotone strategy to handle inconsistency. Those paraconsistent approaches are based on multi-valued semantics (a popular kind of non-classical semantics) such as four-valued DL studied by (Odintsov et al.,2008; Maier et al.,2013) based on Belnap’s four-valued semantics (Belnap., 1977; Lang et al., 2006), paradoxical DL presented by (Zhang et al.,2010) based on Priest’s paradoxical semantics, three-valued DL discussed by (Nguyen et al.,2010) based on Kleene’s three-valued semantics, and (Kamide et al., 2010) based on a dual interpretation semantics.

Complete Article List

Search this Journal:
Reset
Open Access Articles
Volume 14: 4 Issues (2018): 1 Released, 3 Forthcoming
Volume 13: 4 Issues (2017)
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing