Time and Frequency Analysis of Particle Swarm Trajectories for Cognitive Machines

Time and Frequency Analysis of Particle Swarm Trajectories for Cognitive Machines

Dario Schor (University of Manitoba, Canada) and Witold Kinsner (University of Manitoba, Canada)
DOI: 10.4018/jcini.2011010102
OnDemand PDF Download:
No Current Special Offers


This paper examines the inherited persistent behavior of particle swarm optimization and its implications to cognitive machines. The performance of the algorithm is studied through an average particle’s trajectory through the parameter space of the Sphere and Rastrigin function. The trajectories are decomposed into position and velocity along each dimension optimized. A threshold is defined to separate the transient period, where the particle is moving towards a solution using information about the position of its best neighbors, from the steady state reached when the particles explore the local area surrounding the solution to the system. Using a combination of time and frequency domain techniques, the inherited long-term dependencies that drive the algorithm are discerned. Experimental results show the particles balance exploration of the parameter space with the correlated goal oriented trajectory driven by their social interactions. The information learned from this analysis can be used to extract complexity measures to classify the behavior and control of particle swarm optimization, and make proper decisions on what to do next. This novel analysis of a particle trajectory in the time and frequency domains presents clear advantages of particle swarm optimization and inherent properties that make this optimization algorithm a suitable choice for use in cognitive machines.
Article Preview

2. Evolutionary Optimization

This section presents an overview of optimization techniques and a description of the particle swarm optimization (PSO) algorithm originally developed by Kennedy and Eberhart (1995). In this algorithm, the particles act like entities with cognitive elements in their behavior because they are aware of the environment through social interactions.

Complete Article List

Search this Journal:
Volume 17: 1 Issue (2023)
Volume 16: 1 Issue (2022)
Volume 15: 4 Issues (2021)
Volume 14: 4 Issues (2020)
Volume 13: 4 Issues (2019)
Volume 12: 4 Issues (2018)
Volume 11: 4 Issues (2017)
Volume 10: 4 Issues (2016)
Volume 9: 4 Issues (2015)
Volume 8: 4 Issues (2014)
Volume 7: 4 Issues (2013)
Volume 6: 4 Issues (2012)
Volume 5: 4 Issues (2011)
Volume 4: 4 Issues (2010)
Volume 3: 4 Issues (2009)
Volume 2: 4 Issues (2008)
Volume 1: 4 Issues (2007)
View Complete Journal Contents Listing