Towards Stable Model Bases for Causal Strategic Decision Support Systems

Towards Stable Model Bases for Causal Strategic Decision Support Systems

Christian Hillbrand (University of Liechtenstein, Liechtenstein)
Copyright: © 2007 |Pages: 24
DOI: 10.4018/jiit.2007100101
OnDemand PDF Download:
No Current Special Offers


Most decision support systems (DSS) based on causal models fail to analyze the empirical validity of the underlying cause-and-effect hypotheses, but instead concentrate on numerous analysis techniques within the method base. However, the soundness of these cause-and-effect-relations as well as the knowledge of the approximate shape of the functional dependencies underlying these associations turns out to be the biggest issue for the quality of the results of decision supporting procedures. Therefore this article strives towards an approach to prove the causality of nomologic cause-and-effect-hypotheses by empirical evidence as a prerequisite for the approximation of the mostly unknown causal functions. Since the latter very often show non-linear influences, it is necessary to employ universal function approximators for this purpose: consequently the proposed approach adopts artificial neural networks (ANN) as an inductive method to learn a calculational model of cause-and-effect functions from empirical time series.

Complete Article List

Search this Journal:
Open Access Articles
Volume 17: 4 Issues (2021): Forthcoming, Available for Pre-Order
Volume 16: 4 Issues (2020)
Volume 15: 4 Issues (2019)
Volume 14: 4 Issues (2018)
Volume 13: 4 Issues (2017)
Volume 12: 4 Issues (2016)
Volume 11: 4 Issues (2015)
Volume 10: 4 Issues (2014)
Volume 9: 4 Issues (2013)
Volume 8: 4 Issues (2012)
Volume 7: 4 Issues (2011)
Volume 6: 4 Issues (2010)
Volume 5: 4 Issues (2009)
Volume 4: 4 Issues (2008)
Volume 3: 4 Issues (2007)
Volume 2: 4 Issues (2006)
Volume 1: 4 Issues (2005)
View Complete Journal Contents Listing