Web-Based Seamless Migration for Task-Oriented Mobile Distance Learning

Web-Based Seamless Migration for Task-Oriented Mobile Distance Learning

Degan Zhang, Yuan-chao Li, Huaiyu Zhang, Xinshang Zhang, Guangping Zeng
Copyright: © 2006 |Pages: 15
DOI: 10.4018/jdet.2006070106
OnDemand:
(Individual Articles)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

As a new kind of computing paradigm, pervasive computing will meet the requirements of human being that anybody maybe obtain services in anywhere and at anytime, task-oriented seamless migration is one of its applications. Apparently, the function of seamless mobility is suitable for mobile services, such as mobile Web-based learning. In this article, under the banner of seamless mobility, we propose a kind of approach supporting task-oriented mobile distance learning paradigm. Web-based seamless migration, which has the capability that task for mobile distance learning (MDL) dynamically follows the learner from place to place and machine to machine without learner’s awareness or intervention by active service. Our key idea is this capability can be achieved by architecture of component smart platform and agent-based migrating mechanism. In order to clarify the approach, firstly, a description of the task for mobile distance learning and migrating granularity of task has been suggested. Then, the mechanism of seamless migration has been described, including solving several important sub-problems, such as transferring delay, transferring failure, residual computation dependency. Finally, our implemented platform for Web-based seamless migration has been explained, the validity comparison and evaluation of this kind of mobile distance learning paradigm is shown by an experimental demo. Suggested Web-based learning paradigm by seamless migration is convenient to distance learn during mobility and is useful for the busy or mobile distance learner.

Complete Article List

Search this Journal:
Reset
Volume 22: 1 Issue (2024)
Volume 21: 2 Issues (2023)
Volume 20: 4 Issues (2022): 1 Released, 3 Forthcoming
Volume 19: 4 Issues (2021)
Volume 18: 4 Issues (2020)
Volume 17: 4 Issues (2019)
Volume 16: 4 Issues (2018)
Volume 15: 4 Issues (2017)
Volume 14: 4 Issues (2016)
Volume 13: 4 Issues (2015)
Volume 12: 4 Issues (2014)
Volume 11: 4 Issues (2013)
Volume 10: 4 Issues (2012)
Volume 9: 4 Issues (2011)
Volume 8: 4 Issues (2010)
Volume 7: 4 Issues (2009)
Volume 6: 4 Issues (2008)
Volume 5: 4 Issues (2007)
Volume 4: 4 Issues (2006)
Volume 3: 4 Issues (2005)
Volume 2: 4 Issues (2004)
Volume 1: 4 Issues (2003)
View Complete Journal Contents Listing