Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Dipti P. Rana (Sardar Vallabhbhai National Institute of Technology, Surat, India) and Rupa G. Mehta (Sardar Vallabhbhai National Institute of Technology, Surat, India)
Release Date: June, 2021|Copyright: © 2021 |Pages: 309
DOI: 10.4018/978-1-7998-7371-6
ISBN13: 9781799873716|ISBN10: 1799873714|EISBN13: 9781799873730|ISBN13 Softcover: 9781799873723
Hardcover:
Available
$225.00
TOTAL SAVINGS: $225.00
Benefits
  • Printed-On-Demand (POD)
  • Usually ships one day from order
E-Book:
(Multi-User License)
Available
$202.50
List Price: $225.00
10% Discount:-$22.50
TOTAL SAVINGS: $22.50
Benefits
  • Multi-user license (no added fee)
  • Immediate access after purchase
  • No DRM
  • ePub with PDF download
Hardcover +
E-Book:
(Multi-User License)
Available
$270.00
TOTAL SAVINGS: $270.00
Benefits
  • Printed-On-Demand (POD)
  • Usually ships one day from order
  • Multi-user license (no added fee)
  • Immediate access after purchase
  • No DRM
  • ePub with PDF download
Softcover:
Available
$170.00
TOTAL SAVINGS: $170.00
Benefits
  • Printed-On-Demand (POD)
  • Usually ships one day from order
OnDemand:
(Individual Chapters)
Available
$37.50
TOTAL SAVINGS: $37.50
Benefits
  • Purchase individual chapters from this book
  • Immediate PDF download after purchase or access through your personal library
Description & Coverage
Description:

Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance.

Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.

Coverage:

The many academic areas covered in this publication include, but are not limited to:

  • Active Learning
  • Algorithms
  • Big Data
  • Cost Perceptive Approaches
  • Data Preparation
  • Data Preprocessing
  • Data Visualization
  • Data Warehouses
  • Databases
  • Feature Engineering
  • Healthcare Systems
  • Imbalanced Data
  • Social Media
  • Spam Detection
Table of Contents
Search this Book:
Reset
Peer Review Process
The peer review process is the driving force behind all IGI Global books and journals. All IGI Global reviewers maintain the highest ethical standards and each manuscript undergoes a rigorous double-blind peer review process, which is backed by our full membership to the Committee on Publication Ethics (COPE). Learn More >
Ethics & Malpractice
IGI Global book and journal editors and authors are provided written guidelines and checklists that must be followed to maintain the high value that IGI Global places on the work it publishes. As a full member of the Committee on Publication Ethics (COPE), all editors, authors and reviewers must adhere to specific ethical and quality standards, which includes IGI Global’s full ethics and malpractice guidelines and editorial policies. These apply to all books, journals, chapters, and articles submitted and accepted for publication. To review our full policies, conflict of interest statement, and post-publication corrections, view IGI Global’s Full Ethics and Malpractice Statement.