The introduction of contaminants, due to rapid urbanization and anthropogenic activities into the environment, causes distress to the physio-chemical systems including living organisms, which possibly is threatening the dynamics of nature as well as the soil biology by producing certain xenobiotics. Hence, there is an immediate global demand for the diminution of such contaminants and xenobiotics that can otherwise adversely affect the living organisms. Some toxic xenobiotics include synthetic organochlorides such as PAHs and some fractions of crude oil and coal. Over time, microbial remediation processes have been accelerated to produce better, more eco-friendly, and more biodegradable solutions for complete dissemination of these xenobiotic compounds. The advancements in microbiology and biotechnology led to the launch of microbial biotechnology as a separate area of research and contributed dramatically to the development of areas like agriculture, environment, biopharmaceutics, fermented foods, and more.
The Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil provides a detailed comprehensive account for microbial treatment technologies, bioremediation strategies, biotechnology, and the important microbial species involved in remediation. The chapters focus on recent developments in microbial biotechnology in the areas of agriculture and environment and the physiology, biochemistry, and the mechanisms of remediation along with a future outlook. This book is ideal for scientists, biologists, academicians, students, and researchers in the fields of life sciences, microbiology, environmental science, environmental engineering, biotechnology, agriculture, and health sciences.