Adaptive Neuro-Fuzzy Systems

Adaptive Neuro-Fuzzy Systems

Larbi Esmahi (Athabasca University, Canada), Kristian Williamson (Statistics Canada, Canada) and Elarbi Badidi (United Arab Emirates University, UAE)
Copyright: © 2009 |Pages: 6
DOI: 10.4018/978-1-59904-849-9.ch005
OnDemand PDF Download:
No Current Special Offers


Fuzzy logic became the core of a different approach to computing. Whereas traditional approaches to computing were precise, or hard edged, fuzzy logic allowed for the possibility of a less precise or softer approach (Klir et al., 1995, pp. 212-242). An approach where precision is not paramount is not only closer to the way humans thought, but may be in fact easier to create as well (Jin, 2000). Thus was born the field of soft computing (Zadeh, 1994). Other techniques were added to this field, such as Artificial Neural Networks (ANN), and genetic algorithms, both modeled on biological systems. Soon it was realized that these tools could be combined, and by mixing them together, they could cover their respective weaknesses while at the same time generate something that is greater than its parts, or in short, creating synergy. Adaptive Neuro-fuzzy is perhaps the most prominent of these admixtures of soft computing technologies (Mitra et al., 2000). The technique was first created when artificial neural networks were modified to work with fuzzy logic, hence the Neuro-fuzzy name (Jang et al., 1997, pp. 1-7). This combination provides fuzzy systems with adaptability and the ability to learn. It was later shown that adaptive fuzzy systems could be created with other soft computing techniques, such as genetic algorithms (Yen et al., 1998, pp. 469-490), Rough sets (Pal et al., 2003; Jensen et al., 2004, Ang et al., 2005) and Bayesian networks (Muller et al., 1995), but the Neuro-fuzzy name was widely used, so it stayed. In this chapter we are using the most widely used terminology in the field. Neuro-fuzzy is a blanket description of a wide variety of tools and techniques used to combine any aspect of fuzzy logic with any aspect of artificial neural networks. For the most part, these combinations are just extensions of one technology or the other. For example, neural networks usually take binary inputs, but use weights that vary in value from 0 to 1. Adding fuzzy sets to ANN to convert a range of input values into values that can be used as weights is considered a Neuro-fuzzy solution. This chapter will pay particular interest to the sub-field where the fuzzy logic rules are modified by the adaptive aspect of the system. The next part of this chapter will be organized as follows: in section 1 we examine models and techniques used to combine fuzzy logic and neural networks together to create Neuro-fuzzy systems. Section 2 provides an overview of the main steps involved in the development of adaptive Neuro-fuzzy systems. Section 3 concludes this chapter with some recommendations and future developments.
Chapter Preview

Neuro-Fuzzy Technology

Neuro-fuzzy Technology is a broad term used to describe a field of techniques and methods used to combine fuzzy logic and neural networks together (Jin, 2003, pp. 111-140). Fuzzy logic and neural networks each have their own sets of strengths and weaknesses, and most attempts to combine these two technologies have the goal of using each techniques strengths to cover the others weaknesses.

Key Terms in this Chapter

Soft Computing: Soft Computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning and some engineering disciplines, which attempt to study, model, and analyze complex phenomena. The principle partners at this juncture are fuzzy logic, neuron-computing, probabilistic reasoning, and genetic algorithms. Thus the principle of soft computing is to exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low cost solution, and better rapport with reality.

Evolving Fuzzy Neural Network (EFuNN): An Evolving Fuzzy Neural Network is a dynamic architecture where the rule nodes grow if needed and shrink by aggregation. New rule units and connections can be added easily without disrupting existing nodes. The learning scheme is often based on the concept of “winning rule node”.

Neuro-Fuzzy Systems (NFS): A neuro-fuzzy system is a fuzzy system that uses a learning algorithm derived from or inspired by neural network theory to determine its parameters (fuzzy sets and fuzzy rules) by processing data samples.

Self-Organizing Map (SOM): The self-organizing map is a subtype of artificial neural networks. It is trained using unsupervised learning to produce low dimensional representation of the training samples while preserving the topological properties of the input space. The self-organizing map is a single layer feed-forward network where the output syntaxes are arranged in low dimensional (usually 2D or 3D) grid. Each input is connected to all output neurons. Attached to every neuron there is a weight vector with the same dimensionality as the input vectors. The number of input dimensions is usually a lot higher than the output grid dimension. SOMs are mainly used for dimensionality reduction rather than expansion.

Artificial Neural Networks (ANN): An artificial neural network, often just called a “neural network” (NN), is an interconnected group of artificial neurons that uses a mathematical model or computational model for information processing based on a connectionist approach to computation. Knowledge is acquired by the network from its environment through a learning process, and interneuron connection strengths (synaptic weighs) are used to store the acquired knowledge.

Fuzzy Neural Networks (FNN): are Neural Networks that are enhanced with fuzzy logic capability such as using fuzzy data, fuzzy rules, sets and values.

Fuzzy Logic: Fuzzy logic is an application area of fuzzy set theory dealing with uncertainty in reasoning. It utilizes concepts, principles, and methods developed within fuzzy set theory for formulating various forms of sound approximate reasoning. Fuzzy logic allows for set membership values to range (inclusively) between 0 and 1, and in its linguistic form, imprecise concepts like “slightly”, “quite” and “very”. Specifically, it allows partial membership in a set.

Complete Chapter List

Search this Book: