The Application of Data-Mining to Recommender Systems

The Application of Data-Mining to Recommender Systems

J. Ben Schafer
Copyright: © 2009 |Pages: 6
DOI: 10.4018/978-1-60566-010-3.ch008
OnDemand:
(Individual Chapters)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

In a world where the number of choices can be overwhelming, recommender systems help users find and evaluate items of interest. They connect users with items to “consume” (purchase, view, listen to, etc.) by associating the content of recommended items or the opinions of other individuals with the consuming user’s actions or opinions. Such systems have become powerful tools in domains from electronic commerce to digital libraries and knowledge management. For example, a consumer of just about any major online retailer who expresses an interest in an item – either through viewing a product description or by placing the item in his “shopping cart” – will likely receive recommendations for additional products. These products can be recommended based on the top overall sellers on a site, on the demographics of the consumer, or on an analysis of the past buying behavior of the consumer as a prediction for future buying behavior. This paper will address the technology used to generate recommendations, focusing on the application of data mining techniques.
Chapter Preview
Top

Background

Many different algorithmic approaches have been applied to the basic problem of making accurate and efficient recommender systems. The earliest “recommender systems” were content filtering systems designed to fight information overload in textual domains. These were often based on traditional information filtering and information retrieval systems. Recommender systems that incorporate information retrieval methods are frequently used to satisfy ephemeral needs (short-lived, often one-time needs) from relatively static databases. For example, requesting a recommendation for a book preparing a sibling for a new child in the family. Conversely, recommender systems that incorporate information-filtering methods are frequently used to satisfy persistent information (long-lived, often frequent, and specific) needs from relatively stable databases in domains with a rapid turnover or frequent additions. For example, recommending AP stories to a user concerning the latest news regarding a senator’s re-election campaign.

Without computers, a person often receives recommendations by listening to what people around him have to say. If many people in the office state that they enjoyed a particular movie, or if someone he tends to agree with suggests a given book, then he may treat these as recommendations. Collaborative filtering (CF) is an attempt to facilitate this process of “word of mouth.” The simplest of CF systems provide generalized recommendations by aggregating the evaluations of the community at large. More personalized systems (Resnick & Varian, 1997) employ techniques such as user-to-user correlations or a nearest-neighbor algorithm.

The application of user-to-user correlations derives from statistics, where correlations between variables are used to measure the usefulness of a model. In recommender systems correlations are used to measure the extent of agreement between two users (Breese, Heckerman, & Kadie, 1998) and used to identify users whose ratings will contain high predictive value for a given user. Care must be taken, however, to identify correlations that are actually helpful. Users who have only one or two rated items in common should not be treated as strongly correlated. Herlocker et al. (1999) improved system accuracy by applying a significance weight to the correlation based on the number of co-rated items.

Nearest-neighbor algorithms compute the distance between users based on their preference history. Distances vary greatly based on domain, number of users, number of recommended items, and degree of co-rating between users. Predictions of how much a user will like an item are computed by taking the weighted average of the opinions of a set of neighbors for that item. As applied in recommender systems, neighbors are often generated online on a query-by-query basis rather than through the off-line construction of a more thorough model. As such, they have the advantage of being able to rapidly incorporate the most up-to-date information, but the search for neighbors is slow in large databases. Practical algorithms use heuristics to search for good neighbors and may use opportunistic sampling when faced with large populations.

Both nearest-neighbor and correlation-based recommenders provide a high level of personalization in their recommendations, and most early systems using these techniques showed promising accuracy rates. As such, CF-based systems have continued to be popular in recommender applications and have provided the benchmarks upon which more recent applications have been compared.

Complete Chapter List

Search this Book:
Reset