Cultural Heritage Career Paths for Materials Scientists and Corrosion Engineers

Cultural Heritage Career Paths for Materials Scientists and Corrosion Engineers

Stavroula Golfomitsou (UCL Qatar, Qatar), Myrto Georgakopoulou (UCL Qatar, Qatar) and Thilo Rehren (UCL Qatar, Qatar)
DOI: 10.4018/978-1-5225-1798-6.ch063
OnDemand PDF Download:
$30.00
List Price: $37.50

Abstract

The study and preservation of cultural heritage is a multidisciplinary field where Materials Science and Corrosion Science have a very significant role to play. This chapter discusses how materials and corrosion scientists can follow a career in cultural heritage. It highlights the particular challenges that these disciplines encounter in the study and preservation of cultural heritage materials and the exciting career paths offered in museums, monuments, and relevant academic and research institutions. The applications for science and engineering skills to cultural materials are diverse, including the reverse engineering necessary to reconstruct ancient technologies used for materials production, the examination and condition assessment of often complex finds and structures, and the development of innovative treatment methods for their protection and conservation for future generations. Within this range of challenges and materials, numerous career paths are available that lead to specialisations within the sub-fields of archaeological science and conservation science.
Chapter Preview
Top

Background

The preoccupation of scientists with cultural heritage materials has a long history that can be traced back at least to the late 18th century (Caley, 1951; 1967; Pollard & Heron, 2008, pp. 3-6; Winter, 2005). Eminent scientists, primarily chemists at the time, amongst them Martin Heinrich Klaproth (1743-1817), Sir Humphry Davy (1778-1829), and Michael Faraday (1791-1867) were drawn to the analysis of ancient coins, glass, glazes, and pigments. These intermittent studies, driven primarily by curiosity, offered invaluable early insights into the composition and manufacture of ancient artefacts. Several of these analytical studies were incorporated as appendices in the publication of major archaeological discoveries, such as A. H. Layard’s 1853 ‘Discoveries in the Ruins of Niniveh and Babylon’ and H. Schliemann’s 1878 ‘Mycenae’, marking the start of the collaboration between archaeologists and scientists (Pollard & Heron, 2008, p. 5).

Complete Chapter List

Search this Book:
Reset