Deep Learning on Edge: Challenges and Trends

Deep Learning on Edge: Challenges and Trends

Mário P. Véstias
DOI: 10.4018/978-1-6684-5700-9.ch007
OnDemand:
(Individual Chapters)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

Deep learning on edge has been attracting the attention of researchers and companies looking to provide solutions for the deployment of machine learning computing at the edge. A clear understanding of the design challenges and the application requirements are fundamental to understand the requirements of the next generation of edge devices to run machine learning inference. This chapter reviews several aspects of deep learning: applications, deep learning models, and computing platforms. The way deep learning is being applied to edge devices is described. A perspective of the models and computing devices being used for deep learning on edge are given, as well as what challenges face the hardware designers to guarantee the vast set of tight constraints like performance, power consumption, flexibility, etc. of edge computing platforms. Finally, a trends overview of deep learning models and architectures is discussed.
Chapter Preview
Top

Background

Machine learning is a subfield of artificial intelligence whose objective is to give systems the capacity to learn and improve by its own without being explicitly programmed to do it. Machine learning algorithms extract features from data and build models from it so that new decisions and new outcomes are produced without being programmed a priori with these models and rules.

There are many types of machine learning algorithms with different approaches and application targets: Bayesian (Barber, 2012), clustering (Bouveyron et al., 2019), instance-based (Keogh, 2011), ensemble (Zhang, 2012), artificial neural network (Haykin, 2008), deep learning network (Patterson & Gibson, 2017), decision tree (Quinlan, 1992), association rule learning (Zhang & Zhang, 2002), regularization (Goodfellow et al., 2016), regression (Matloff, 2017), support-vector machine (Christmann & Steinwart, 2008) and others.

Complete Chapter List

Search this Book:
Reset