Receive a 20% Discount on All Purchases Directly Through IGI Global's Online Bookstore

M. Mohammadian (University of Canberra, Australia)

Copyright: © 2012
|Pages: 9

DOI: 10.4018/978-1-60960-818-7.ch210

Chapter Preview

TopSystems such as robotic systems and systems with large input-output data tend to be difficult to model using mathematical techniques. These systems have typically high dimensionality and have degrees of uncertainty in many parameters. Artificial intelligence techniques such as neural networks, fuzzy logic, genetic algorithms and evolutionary algorithms have created new opportunities to solve complex systems. Application of fuzzy logic [Bai, Y., Zhuang H. and Wang, D. (2006)] in particular, to model and solve industrial problems is now wide spread and has universal acceptance. Fuzzy modelling or fuzzy identification has numerous practical applications in control, prediction and inference. It has been found useful when the system is either difficult to predict and or difficult to model by conventional methods. Fuzzy set theory provides a means for representing uncertainties. The underlying power of fuzzy logic is its ability to represent imprecise values in an understandable form. The majority of fuzzy logic systems to date have been static and based upon knowledge derived from imprecise heuristic knowledge of experienced operators, and where applicable also upon physical laws that governs the dynamics of the process.

Although its application to industrial problems has often produced results superior to classical control, the design procedures are limited by the heuristic rules of the system. It is simply assumed that the rules for the system are readily available or can be obtained. This implicit assumption limits the application of fuzzy logic to the cases of the system with a few parameters. The number of parameters of a system could be large. The number of fuzzy rules of a system is directly dependent on these parameters. As the number of parameters increase, the number of fuzzy rules of the system grows exponentially.

Genetic Algorithms can be used as a tool for the generation of fuzzy rules for a fuzzy logic system. This automatic generation of fuzzy rules, via genetic algorithms, can be categorised into two learning techniques, supervised and unsupervised. In this paper unsupervised learning of fuzzy rules of hierarchical and multi-layer fuzzy logic control systems are considered. In unsupervised learning there is no external teacher or critic to oversee the learning process. In other words, there are no specific examples of the function to be learned by the system. Rather, provision is made for a task-independent measure of the quality or representation that the system is required to learn. That is the system learns statistical regularities of the input data and it develops the ability to learn the feature of the input data and thereby create new classes automatically [Mohammadian, M., Nainar, I. and Kingham, M. (1997)].

To perform unsupervised learning, a competitive learning strategy may be used. The individual strings of genetic algorithms compete with each other for the “opportunity” to respond to features contained in the input data. In its simplest form, the system operates in accordance with the strategy that ‘the fittest wins and survives’. That is the individual chromosome in a population with greatest fitness ‘wins’ the competition and gets selected for the genetic algorithms operations (cross-over and mutation). The other individuals in the population then have to compete with fit individual to survive.

The diversity of the learning tasks shown in this paper indicates genetic algorithm’s universality for concept learning in unsupervised manner. A hybrid integrated architecture incorporating fuzzy logic and genetic algorithm can generate fuzzy rules for problems requiring supervised or unsupervised learning. In this paper only unsupervised learning of fuzzy logic systems is considered. The learning of fuzzy rules and internal parameters in an unsupervised manner is performed using genetic algorithms. Simulations results have shown that the proposed system is capable of learning the control rules for hierarchical and multi-layer fuzzy logic systems. Application areas considered are, hierarchical control of a network of traffic light control and robotic systems.

Search this Book:

Reset

Copyright © 1988-2018, IGI Global - All Rights Reserved