Human-Based Models for Ambient Intelligence Environments

Human-Based Models for Ambient Intelligence Environments

Giovanni Acampora (Universita degli Studi di Salerno, Italy), Vincenzo Loia (Universita degli Studi di Salerno, Italy), Michele Nappi (Universita degli Studi di Salerno, Italy) and Stefano Ricciardi (Universita degli Studi di Salerno, Italy)
DOI: 10.4018/978-1-59904-249-7.ch001
OnDemand PDF Download:
$30.00
List Price: $37.50

Abstract

Ambient Intelligence gathers best results from three key technologies, Ubiquitous Computing, Ubiquitous Communication, and Intelligent User Friendly Interfaces. The functional and spatial distribution of tasks is a natural thrust to employ multiagent paradigm to design and implement AmI environments. Two critical issues, common in most of applications, are (1) how to detect in a general and efficient way context from sensors and (2) how to process contextual information in order to improve the functionality of services. Here we describe an agent-based ambient intelligence architecture able to deliver services on the basis of physical and emotional user status captured from a set of biometric features. Abstract representation and management is achieved thanks to two markup languages, H2ML and FML, able to model behavioral as well as fuzzy control activities and to exploit distribution and concurrent computation in order to gain real-time performances.

Complete Chapter List

Search this Book:
Reset