Ubiquitous Mobile Learning in Higher Education

Ubiquitous Mobile Learning in Higher Education

Gaye Lightbody
DOI: 10.4018/978-1-60566-014-1.ch194
OnDemand:
(Individual Chapters)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

The higher education environment is changing driven by the needs of its students, evolving into a combination of different approaches (blended learning), with lectures, tutorials, and independent reading forming just one side of the overall learning encounter. A white paper from IBM (Robert, 2005) highlights some interesting viewpoints on how training programs should aim to meet the changing needs of today’s learners. They are part of the Millennial (or “Net”) Generation, brought up within a world of computers, mobile phones, and the Internet. More often, this generation of learner has little fear of present technology and in fact desires the latest electronic hi-tech advances. With such natural acceptance they have few barriers to impede the use of alternative methods, such as electronic learning (e-learning), to supplement their educational experience. As computing devices have become smaller and network accesses have become ubiquitous, the paradigm has been enhanced by the concept of mobile or m-learning. Carlson (2005) has described the Millennial generation as smart but impatient, commanding immediate results and with divided attention spans. However, there are positive observations about their self-motivation and wiliness to seek out and share resources to complement their course material. The speed at which information can be gleaned from the Internet using search engines has obvious benefits and students have grown to expect the same speed and accessibility in all facets of their lives, including education. This has created demands on education facilities to keep pace with modern living and upgrade teaching practices to make the most of technical advances. The modern student is a consumer with a more varied educational background and entrance route, and with that comes more rigorous demands on the applicability of the education they are receiving in return for their money. It is likely that this will become a driver for modern teaching practices. This article will give an introduction to some of the current research into the use of modern multimedia technologies in higher education facilities, with detail given to some approaches adopted by the University of Ulster (Lightbody, McCullagh, Weeks, & Hutchison, 2006)
Chapter Preview
Top

Introduction

The higher education environment is changing driven by the needs of its students, evolving into a combination of different approaches (blended learning), with lectures, tutorials, and independent reading forming just one side of the overall learning encounter. A white paper from IBM (Robert, 2005) highlights some interesting viewpoints on how training programs should aim to meet the changing needs of today’s learners. They are part of the Millennial (or “Net”) Generation, brought up within a world of computers, mobile phones, and the Internet. More often, this generation of learner has little fear of present technology and in fact desires the latest electronic hi-tech advances. With such natural acceptance they have few barriers to impede the use of alternative methods, such as electronic learning (e-learning), to supplement their educational experience. As computing devices have become smaller and network accesses have become ubiquitous, the paradigm has been enhanced by the concept of mobile or m-learning.

Carlson (2005) has described the Millennial generation as smart but impatient, commanding immediate results and with divided attention spans. However, there are positive observations about their self-motivation and wiliness to seek out and share resources to complement their course material. The speed at which information can be gleaned from the Internet using search engines has obvious benefits and students have grown to expect the same speed and accessibility in all facets of their lives, including education. This has created demands on education facilities to keep pace with modern living and upgrade teaching practices to make the most of technical advances.

The modern student is a consumer with a more varied educational background and entrance route, and with that comes more rigorous demands on the applicability of the education they are receiving in return for their money. It is likely that this will become a driver for modern teaching practices. This article will give an introduction to some of the current research into the use of modern multimedia technologies in higher education facilities, with detail given to some approaches adopted by the University of Ulster (Lightbody, McCullagh, Weeks, & Hutchison, 2006).

Top

Application Of Modern Technology In Education

Changes in student characteristics have encouraged a great amount of contemporary research within higher education in the involvement of mobile technology to enhance the learning experience and assist in the transfer and understanding of material. With the explosive growth in the use of mobile devices such as phones, laptops, iPods, and MP3 players this has set the platform for moving education out from the bounds of a classroom and into our everyday lives, creating the concept of “anytime-anywhere learning.” A culture has evolved with these devices becoming an integral part of our daily routine, yielding the concept of “infotainment.” Figure 1 depicts some examples of how modern technology can be incorporated into an educational environment.

Figure 1.

Modern mobile technology in education

978-1-60566-014-1.ch194.f01

Recent trials (Carlson, 2004) within higher education facilities using audio supplementary material have proven to be effective. A key contributor to this success is accessibility; students can perform daily tasks while listening to course material or utilize unproductive travel time watching a videocast. These devices can hold a vast volume of material, essentially providing a personalized portable digital library. Tumbling cost is another driving factor increasing affordability, and hence their growth in ownership (Tempo, 2006).

Key Terms in this Chapter

ISO Norm: “International Organization for Standardization” is a network of the national standards institutes of 148 countries, on the basis of one member per country, with a Central Secretariat in Geneva, Switzerland, that coordinates the system. ISO is a nongovernmental organization: http://www.iso.org

CSG: There are few ways to describe a three-dimensional model. One of the most popular is Constructive Solid Geometry (CSG). In CSG, a model is compiled from primitives and Boolean operators linking them. Data are stored in the tree structure, where the leaves are the primitives, and the nodes are the operations: intersection (AND), union (OR), and complement (NOT).

Ontology: An ontology is a specification of a conceptualisation of a knowledge domain. An ontology is also a vocabulary that describes objects and the relations between them in a formal way. An ontology uses grammar to employ the vocabulary terms to express something meaningful within a specified domain of interest. The vocabulary is used to make queries and assertions.

CAD (Computer Aided Design): The use of computer programs and systems to design detailed two- or three-dimensional models of physical objects, such as mechanical parts, buildings, and molecules.

B-Rep: In boundary representation (B-Rep), complex geometrical forms are described using their boundary surfaces. In this process, the surface of an object is broken down into smaller polygons, mainly triangles. This, therefore, makes this type of modeling particularly suitable for irregularly-shaped surfaces. Most animation programs use this method.

XSL Style Sheet: XSL is a language for expressing style sheets. An XSL style sheet is a file that describes how to display an XML document of a given type: http://www.w3.org/Style/XSL/

Cyclic Graph: A graph of n nodes and n edges such that node i is connected to the two adjacent nodes i+1 and i-1 (mod n), where the nodes are numbered 0, 1, ..., n-1, http://mathworld.wolfram.com/CyclicGraph.html

Complete Chapter List

Search this Book:
Reset