Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Building Lifecycle

Encyclopedia of Information Science and Technology, Second Edition
The lifecycle of a building is articulated in two parts. The first part is about the construction into a civil engineering project. The second part concerns the “use of the building” which deals with facilities management. Currently, these two parts are dissociated in the building management processes. The Teams which are concerned with the processes facilities management are rarely those who have participated in the construction of the building. The facilities management step often begins with a physical analysis of the building to obtain a numerical representation of this building in CAD software. To avoid information loss acquired during the construction of the building, it is necessary to develop a building information system at the beginning of its lifecycle.
Published in Chapter:
CAD Software and Interoperability
Christophe Cruz (Université de Bourgogne, France) and Christophe Nicolle (Université de Bourgogne, France)
DOI: 10.4018/978-1-60566-026-4.ch082
Abstract
Decisions taken during the conception phases in huge architectural projects influence a lot the cost and the schedule of the building construction. To ease this decision-making, many mock-ups have been used as a project prototype. This prototyping is useful to test and to improve the conception of projects. Nowadays, collaborative sites that appear on the Web greatly improve the flexibility of the framework’s actors of a distant project [Aliakseyeu, Martens, Subramanian, Vrouble, & Wesselink, 2001; Balaguer & DeGennaro, 1996; Klinker, Dutoit, Bauer, Bayes, Novak, & Matzke, 2002). Digital mock-ups are used to represent future 3D elements of the final product. Digital mock-ups are known to be often employed in the architectural field. Indeed, the visualization of the future buildings in 3D by architects and engineers is a way to facilitate the testing of the choices, the scheduling of costs and processes, and the completion dates. In the architectural field, all types of activities have developed tools for special prototyping: structural analysis, thermal and fluidic networks, and so forth. Unfortunately, this development is completely chaotic. Sometimes existing tools in the same type of activity cannot exchange information. Moreover, information stored by tools is in most cases bound by a set of files that contain only geometrical descriptions of the building. Not every actor of a project has necessarily the same knowledge as the other actors to understand and to interpret information. Thus, the collaboration between the actors as well as the data interoperability seems to be difficult to evolve without a new kind of tool. The following section presents two examples of platforms using digital mock-ups to handle conception data. The section “Collaborative Web Platform” focuses on our solution through the presentation of the Active3D collaborative platform. The section “Interoperability Demonstration” presents the Active3D platform as a central point of collaboration with the help of use-cases examples. The last section concludes on the work being undertaken.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR