Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Conditional Random Fields (CRFs)

Handbook of Research on Systems Biology Applications in Medicine
These are undirected discriminative graphical models that directly compute the conditional likelihood of a hidden state sequence (y) given the observation sequence (x). This P(y|x) is proportional to the product of the potential functions over all the cliques in the graph. CRFs define the clique potential as an exponential function and guarantee finding of the global optimum since the optimization function is convex ( Lafferty et al., 2001 ). Forward and backward probability calculations are derived similar to HMMs. Unlike HMMs, no assumptions are made about independence of the observed features. The feature definition can also be arbitrary, including overlapping features and long-range interactions ( Liu et al., 2006 ).
Published in Chapter:
Computer Aided Knowledge Discovery in Biomedicine
Vanathi Gopalakrishnan (University of Pittsburgh, USA)
Copyright: © 2009 |Pages: 16
DOI: 10.4018/978-1-60566-076-9.ch007
Abstract
This chapter provides a perspective on 3 important collaborative areas in systems biology research. These areas represent biological problems of clinical significance. The first area deals with macromolecular crystallization, which is a crucial step in protein structure determination. The second area deals with proteomic biomarker discovery from high-throughput mass spectral technologies; while the third area is protein structure prediction and complex fold recognition from sequence and prior knowledge of structure properties. For each area, successful case studies are revisited from the perspective of computer- aided knowledge discovery using machine learning and statistical methods. Information about protein sequence, structure, and function is slowly accumulating in standardized forms within databases. Methods are needed to maximize the use of this prior information for prediction and analysis purposes. This chapter provides insights into such methods by which available information in existing databases can be processed and combined with systems biology expertise to expedite biomedical discoveries.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR