Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Multiple testing problem

Encyclopedia of Artificial Intelligence
A problem that occurs when a large number of hypotheses are tested simultaneously using a user-defined a cut off p-value which may lead to rejecting a non-negligible number of null hypotheses by chance.
Published in Chapter:
AI Methods for Analyzing Microarray Data
Amira Djebbari (National Research Council Canada, Canada), Aedín C. Culhane (Harvard School of Public Health, USA), Alice J. Armstrong (The George Washington University, USA), and John Quackenbush (Harvard School of Public Health, USA)
Copyright: © 2009 |Pages: 6
DOI: 10.4018/978-1-59904-849-9.ch010
Abstract
Biological systems can be viewed as information management systems, with a basic instruction set stored in each cell’s DNA as “genes.” For most genes, their information is enabled when they are transcribed into RNA which is subsequently translated into the proteins that form much of a cell’s machinery. Although details of the process for individual genes are known, more complex interactions between elements are yet to be discovered. What we do know is that diseases can result if there are changes in the genes themselves, in the proteins they encode, or if RNAs or proteins are made at the wrong time or in the wrong quantities. Recent advances in biotechnology led to the development of DNA microarrays, which quantitatively measure the expression of thousands of genes simultaneously and provide a snapshot of a cell’s response to a particular condition. Finding patterns of gene expression that provide insight into biological endpoints offers great opportunities for revolutionizing diagnostic and prognostic medicine and providing mechanistic insight in data-driven research in the life sciences, an area with a great need for advances, given the urgency associated with diseases. However, microarray data analysis presents a number of challenges, from noisy data to the curse of dimensionality (large number of features, small number of instances) to problems with no clear solutions (e.g. real world mappings of genes to traits or diseases that are not yet known). Finding patterns of gene expression in microarray data poses problems of class discovery, comparison, prediction, and network analysis which are often approached with AI methods. Many of these methods have been successfully applied to microarray data analysis in a variety of applications ranging from clustering of yeast gene expression patterns (Eisen et al., 1998) to classification of different types of leukemia (Golub et al., 1999). Unsupervised learning methods (e.g. hierarchical clustering) explore clusters in data and have been used for class discovery of distinct forms of diffuse large B-cell lymphoma (Alizadeh et al., 2000). Supervised learning methods (e.g. artificial neural networks) utilize a previously determined mapping between biological samples and classes (i.e. labels) to generate models for class prediction. A k-nearest neighbor (k-NN) approach was used to train a gene expression classifier of different forms of brain tumors and its predictions were able to distinguish biopsy samples with different prognosis suggesting that microarray profiles can predict clinical outcome and direct treatment (Nutt et al., 2003). Bayesian networks constructed from microarray data hold promise for elucidating the underlying biological mechanisms of disease (Friedman et al., 2000).
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR